Service

Axial piston fixed motor AA2FM

RA-A 91001/07.2014 1/40 Replaces: 06.12

Data sheet

Series 6

Sizes Nominal pressure/Maximum pressure 10 to 180 5800/6500 psi (400/450 bar) 250 5100/5800 psi (350/400 bar) Open and closed circuits

Contents

Ordering code for standard program	2
Technical data	5
Dimensions	14
Flushing and boost pressure valve	30
Pressure-relief valves	32
Counterbalance valve BVD and BVE	34
Speed sensors	38
Installation instructions	39
General instructions	40

Features

- Fixed motor with axial tapered piston rotary group of bentaxis design, for hydrostatic drives in open and closed circuits
- For use in mobile and stationary applications
- The output speed is dependent on the flow of the pump and the displacement of the motor.
- The output torque increases with the pressure differential between the high-pressure and the low-pressure side.
- Finely graduated sizes permit far-reaching adaptation to the drive case
- High power density
 - Small dimensions
 - High total efficiency
 - Good starting characteristics
 - Economical design
 - One-piece tapered piston with piston rings for sealing

•

_

L

М

W

Ordering code for standard program

	AA2F		Μ		/	6		W	-	V						
01	02	03	04	05		06	07	08		09	10	11	12	13	14	15

Hydraulic fluid

	Mineral oil and HFD. H	IFD for sizes 250 only in combination with long-life bearing "L" (without code)	
01	HFB-, HFC	sizes 10 to 180 (without code)	
	hydraulic fluid	sizes 250 (only in combination with long-life bearing "L")	E-

Axial piston unit

02	Bent axis design, fixed, SAE Version			AA2F
	Drive shaft bearing	10 to 180	250	
03	Standard bearing (without code)	•	•	

Long-life bearing Operation mode

04	Motor	(plua-in	motor	A2FF.	see	RF	91008)
		(piug iii	motor	ΛΖΙ Ľ ,	366		31000)

Size Geometric displacement, see table of values on page 7 size 10 12 16 23 28 32 45 56 in³/rev. 0.73 0.98 1.95 05 0.63 1.40 1.71 2.78 3.42 size 80 90 107 125 160 180 250 63 in³/rev. 3.84 4.91 5.49 6.51 7.63 9.79 10.98 15.25

Series

06		6
	Index	

0.7	sizes 10 to 180	1
07	size 250	0

Direction of rotation

08 Viewed on drive shaft, bidirectional	
---	--

Seals

09	FKM (flour-caoutchouc)																		V
	Drive shafts		10	12	16	23	28	32	45	56	63	80	90	107	125	160	180	250	
	Splined shaft											-	-			•			S
	SAE J744		-	-	-	-	-	-	-	•	•	-	-	-	-	-	-	-	Т
	(ANSI B92.1a)		-	-	-	-	-	-	-	-	-	•	•	•	•	-	-	-	U
10			-	-	-	-	-	-	-	-	-	•	•	-	-	-	-	-	۵
	Parallel keyed shaft DIN 6885		•	•	•	•	•	•	-	•	•	•	•	•	•	•	•	-	В
			•	•	-	•	•	-	•	•	-	•	-	•	-	•	-	-	Ρ
	SAE parallel keyed shaft		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\bullet	Κ
	Mounting flange		10	12	16	23	28	32	45	56	63	80	90	107	125	160	180	250	
	SAE J744	2-hole				-	-	-	-	-	-	-	-	-	-	-	-	-	С
11		4 hala	-	-	-	•	•	•	•	•	•	-	-		•	•	•		D
	4-hole		_	_	_	-	-	_	_	-	_			-	-	_	-	_	DN

Ordering code for standard program

	AA2F		М		/	6		W	-	V						
01	02	03	04	05		06	07	08		09	10	11	12	13	14	15

	Port plates for service lir	nes			10 to 16	23	28, 32	45	56, 63	80, 90	107, 125	160, 180	250	
	SAE flange ports A and B	at rear ¹⁾	51	0	-	•	•	•	•	•	•	•	\bullet	510
	SAE flange ports A and B		52	0	-	•	•		•	•	•	•		520
	at side, opposite ¹⁾			7	-		•		•	•	•	•		527
	Threaded ports A and B at side, opposite ¹⁾		53	0	•	•	•	-	-	-	-	-	-	530
	Threaded ports A and B at side and rear ¹⁾²⁾		54	0	_	•	•	-	_	_	_	_	-	540
	SAE flange ports A and B at bottom ¹⁾		60	0	-	-	-	-	-	•	•	-	-	600
12	Port plate with 1-level pressure-relief valves for mounting a	BVD 20	17	1	-	-	-	-	-	-	●	-	-	171 178
			18	8	_	-	•	•	•	•	•	•	-	181
		BVD/BVE 25	18	-	-	-	-	-	-	-	•	•	_4)	188
	Port plate with		19	1	-	-	•		•	•	•	•	-	191
	pressure-relief valves ⁵⁾			2	-	-	•				•	•	-	192
	Valves			▲_										
	Without valve							0						
	With pressure-relief valve (without pressu	re bo	ost	facility)			1						
	With pressure-relief valve (with pressure b	poost	t fac	ility)			2						
	With flushing and boost pressure valve, mounted													
	Counterbalance valve BVD/BVE mounted ³⁾⁶⁾							8						
	Flushing and boost pressu	re valve, integra	ated					9						

	Speed sensors (see page 35)	10 to 16	23 to 32	45	56 to 90	107 to 180	250	
	Without speed sensor (without code)	•	•	•	•	•	•	
	Prepared for HDD speed sensor	-					-	F
13	HDD speed sensor mounted ⁷⁾	-					-	н
	Prepared for DSM/DSA speed sensor	-	•	•	•	•	-	U
	DSM/DSA speed sensor mounted ⁷⁾	-	•	•		•	-	V

Special version

14	Standard version (without code)	
14	Special version for slew drives (standard with port plate 19)	J

Standard / special version

	Standard version (without code)	
15	Standard version with installation variants, e. g. T ports against standard open or closed	-Y
	Special version	-S

Available

O = On request - = Not available

 \blacktriangle = Not for new projects

1) Fastening threads or threaded ports are SAE (UN/UNF)

- 2) Threaded ports at the sides (sizes 10 to 63) plugged with threaded plugs
- 3) Note the restrictions on page 32
- 4) Please contact us.
- 5) Fastening threads and threaded ports are metric
- Specify ordering code of counterbalance valve according to data sheet (BVD – RE 95522, BVE – RE 95525) separately.
- 7) Specify ordering code of sensor according to data sheet (DSM – RE 95132, DSA – RE 95133, HDD – RE 95135) separately and observe the requirements on the electronics

Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids), RE 90222 (HFD hydraulic fluids) and RE 90223 (HFA, HFB, HFC hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

The fixed motor AA2FM is not suitable for operation with HFA hydraulic fluid. If HFB, HFC or HFD or environmentally acceptable hydraulic fluids are used, the limitations regarding technical data or other seals must be observed.

Selection diagram

Viscosity and temperature of hydraulic fluid

Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in a closed circuit, the circuit temperature, in an open circuit, the reservoir temperature.

The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (v_{opt} see shaded area of the selection diagram). We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X °F (X °C), an operating temperature of 140 °F (60 °C) is set in the circuit. In the optimum operating viscosity range (v_{opt} , shaded area), this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

Note

The case drain temperature, which is affected by pressure and speed, can be higher than the circuit temperature or reservoir temperature. At no point of the component may the temperature be higher than 240 °F (115 °C). The temperature difference specified below is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, we recommend flushing the case at port U (size 250) or using a flushing and boost pressure valve (see pages 28).

	Viscosity [SUS (mm²/s)]	Temp	erature	Comment
Transport and storage at ambient temperature		$T_{min} \ge T_{opt} =$	-58 °F (-50 °C) +41 °F to +68 °F (+5 °C to +20 °C)	factory preservation: up to 12 months with standard, up to 24 months with long-term
(Cold) start-up ¹⁾	v _{max} = 7400 (1600)	$T_{St} \geq$	-40 °F (-40 °C)	$\label{eq:stars} \begin{array}{l} t\leq 3 \text{ min, without load } (p\leq 725 \text{ psi (50 bar)}), \\ n\leq 1000 \text{ rpm (for sizes 10 to 180),} \\ n\leq 0.25 \bullet n_{nom} \text{ (for sizes 250)} \end{array}$
Permissible temperatur	e difference	$\Delta T \le 4$	15 °F (25 °C)	between axial piston unit and hydraulic fluid
Warm-up phase	v < 7400 to 1850 (1600 to 400)	Τ =	-40 °F to -13 °F (-40 °C to -25 °C)	at $p \leq 0.7 \bullet p_{nom}, n \leq 0.5 \bullet n_{nom}$ and $t \leq 15 min$
Operating phase				
Temperature difference		$\Delta T = a$	approx. 22 °F (12 °C)	between hydraulic fluid in the bearing and at port T.
Maximum temperature		+240	°F (115 °C)	in the bearing
		+217 '	°F (103 °C)	measured at port T
Continuous operation	v = 1850 to 47 (400 to 10) $v_{opt} = 170 \text{ to } 74$ (36 to 16)	Τ =	-13 °F to +195 °F (-25 ℃ to +90 ℃)	measured at port T, no restriction within the permissible data
Short-term operation ²⁾	$v_{min} \ge$ 32 (7)	T _{max} =	+217 °F (+103 °C)	measured at port T, t < 3 min, p < 0.3 • p_{nom}
FKM shaft seal ¹⁾		T≤	+240 °F (+115 °C)	see page 5

1) At temperatures below -13 °F (-25 °C), an NBR shaft seal is required

(permissible temperature range: -40 °F to +195 °F (-40 °C to +90 °C)).

2) Sizes 250, please contact us.

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

To ensure the functional reliability of the axial piston unit, a gravimetric analysis of the hydraulic fluid is necessary to determine the amount of solid contaminant and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 is to be maintained.

At very high hydraulic fluid temperatures (+195 °F to +240 °F (90 °C to maximum 115 °C)), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.

If the above classes cannot be achieved, please contact us.

Shaft seal

Permissible pressure loading

The service life of the shaft seal is influenced by the speed of the axial piston unit and the case drain pressure (case pressure). The mean differential pressure of 30 psi (2 bar) between the case and the ambient pressure may not be enduringly exceeded at normal operating temperature. For a higher differential pressure at reduced speed, see diagram. Momentary pressure spikes (t < 0.1 s) of up to 145 psi (10 bar) are permitted. The service life of the shaft seal decreases with an increase in the frequency of pressure spikes.

The case pressure must be equal to or higher than the ambient pressure.

The values are valid for an ambient pressure $p_{abs} = 15$ psi (1 bar).

Temperature range

The FKM shaft seal may be used for case drain temperatures from -13 °F to +240 °F (-25 °C to +115 °C).

Note

For application cases below -13 °F (-25 °C), an NBR shaft seal is required (permissible temperature range: -40 °F to 195 °F (-40 °C to +90 °C). State NBR shaft seal in plain text when ordering.

Please contact us.

Direction of flow

Direction of rotation, viewed	on drive shaft
clockwise	counter-clockwise
A to B	B to A

Speed range

No limit to minimum speed n_{min} . If uniformity of motion is required, speed n_{min} must not be less than 50 rpm. See table of values on page 7 for maximum speed.

Long-life bearing

Size 250

For long service life and use with HF hydraulic fluids. Identical external dimensions as motor with standard bearings. Subsequent conversion to long-life bearings is possible. Bearing and case flushing via port U is recommended.

Flushing flow (recommended)

Size		250
$\mathbf{q}_{v\text{flush}}$	gpm	2.6
	L/min	10

Operating pressure range

(operating with mineral oil)

Pressure at service line port A or B

Sizes 10 to 180

Nominal pressure pnom 580	0 psi (400 bar) absolute
---------------------------	--------------------------

Maximum pressure pmax	6500 psi (450 bar) absolute
Single operating period	10 s
Total operating period	300 h

Summation pressure (pressure A + pressure B) p_{Su} _____ 10150 psi (700 bar)

Sizes 250

Nominal pressure p_{nom} _____ 5100 psi (350 bar) absolute

maximum pressure p	max 0000 p3i (+00 bai/ abi	Soluto
Single operating perio	d	10 s
Total operating period		300 h

Summation pressure (pressure A + pressure B) p_{Su}_____ 10150 psi (700 bar)

Minimum pressure (high-pressure side) ______ 365 psi (25 bar) absolute

Rate of pressure change RA max

with integrated pressure-relief valve__130000 psi/s (9000 bar/s) without pressure-relief valve_____ 232000 psi/s (16000 bar/s)

Note

Values for other hydraulic fluids, please contact us.

Minimum pressure - pump mode (inlet)

To prevent damage to the axial piston motor in pump operating mode (change of high-pressure side with unchanged direction of rotation, e. g. when braking), a minimum pressure must be guaranteed at the service line port (inlet). The minimum pressure depends on the speed of the axial piston unit (see characteristic curve below).

This diagram is valid only for the optimum viscosity range from $v_{opt} = 170$ to 74 SUS (36 to 16 mm²/s).

Please contact us if these conditions cannot be satisfied.

Definition

Nominal pressure pnom

The nominal pressure corresponds to the maximum design pressure.

Maximum pressure pmax

The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

Minimum pressure (high-pressure side)

Minimum pressure at the high-pressure side (A or B) which is required in order to prevent damage to the axial piston unit.

Summation pressure p_{Su}

The summation pressure is the sum of the pressures at both service line ports (A and B).

Rate of pressure change R_A

Maximum permissible rate of pressure rise and reduction during a pressure change over the entire pressure range.

Total operating period = $t_1 + t_2 + ... + t_n$

Table of values (theoretical values, without efficiency and tolerances; values rounded)

Size	•	NG	,	10	12	16	23	28	32	45	56
Displacemen	nt geometric,	Vg	in ³	0.63	0.73	0.98	1.40	1.71	1.95	2.78	3.42
per revolution	n		cm ³	10.3	12	16	22.9	28.1	32	45.6	56.1
Speed maximum ¹⁾		n _{nom}	rpm	8000	8000	8000	6300	6300	6300	5600	5000
Input flow ³		n _{max} ²⁾	rpm	8800	8800	8800	6900	6900	6900	6200	5500
Input flow ³⁾ at n _{nom} and V _g			gpm	21.8	25.3	33.9	38.2	46.8	53.4	67.4	74.2
at n _{nom} an	ıd V _g	$\mathbf{q}_{\mathbf{V}}$	L/min	82	96	128	144	177	202	255	281
Torque ⁴⁾	$\Delta p = 5100 \text{ psi}$	Т	lb-ft	42	49	66	94	116	132	188	231
at V_g and	$\Delta p = 350 \text{ bar}$	Т	Nm	57	67	89	128	157	178	254	313
	$\Delta p = 5800 \text{ psi}$	Т	lb-ft	49	56	75	108	132	150	213	263
	$\Delta p = 400 \text{ bar}$	Т	Nm	66	76	102	146	179	204	290	357
Rotary stiffne	ess	С	kNm/rad	0.92	1.25	1.59	2.56	2.93	3.12	4.18	5.94
Moment of in	nertia for	J_{GR}	lbs-ft ²	0.0095	0.0095	0.0095	0.0285	0.0285	0.0285	0.0569	0.0997
rotary group			kgm ²	0.0004	0.0004	0.0004	0.0012	0.0012	0.0012	0.0024	0.0042
Maximum and acceleration	gular	α	rad/s ²	5000	5000	5000	6500	6500	6500	14600	7500
Case volume)	V	gal	0.045	0.045	0.045	0.053	0.053	0.053	0.087	0.119
			L	0.17	0.17	0.17	0.20	0.20	0.20	0.33	0.45
Mass (appro	x.)	m	lbs	12	12	12	21	21	21	30	40
			kg	5.4	5.4	5.4	9.5	9.5	9.5	13.5	18
Size											
Size		NG		63	80	90	107	125	160	180	250
Size Displacemer	nt geometric,	NG Vg	in ³	63 3.84	80 4.91	90 5.49	107 6.51	125 7.63	160 9.79	180 10.98	250 15.25
Size Displacemen per revolution	nt geometric, n	NG V _g	in ³ cm ³	63 3.84 63	80 4.91 80.4	90 5.49 90	107 6.51 106.7	125 7.63 125	160 9.79 160.4	180 10.98 180	250 15.25 250
Size Displacement per revolution Speed maxim	nt geometric, n num ¹⁾	NG V _g	in ³ cm ³ rpm	63 3.84 63 5000	80 4.91 80.4 4500	90 5.49 90 4500	107 6.51 106.7 4000	125 7.63 125 4000	160 9.79 160.4 3600	180 10.98 180 3600	250 15.25 250 2700
Size Displacemen per revolution Speed maxim	nt geometric, n num ¹⁾	NG Vg n _{nom} n _{max} ²⁾	in ³ cm ³ rpm rpm	63 3.84 63 5000 5500	80 4.91 80.4 4500 5000	90 5.49 90 4500 5000	107 6.51 106.7 4000 4400	125 7.63 125 4000 4400	160 9.79 160.4 3600 4000	180 10.98 180 3600 4000	250 15.25 250 2700
Size Displacemen per revolution Speed maxim	nt geometric, n num ¹⁾	NG V _g n _{nom} n _{max} ²⁾	in ³ cm ³ rpm rpm gpm	63 3.84 63 5000 5500 83.1	80 4.91 80.4 4500 5000 95.6	90 5.49 90 4500 5000 106.9	107 6.51 106.7 4000 4400 112.7	125 7.63 125 4000 4400 132.1	160 9.79 160.4 3600 4000 152.5	180 10.98 180 3600 4000 171.1	250 15.25 250 2700 - 178
Size Displacemen per revolution Speed maxim Input flow ³⁾ at n _{nom} an	nt geometric, n num ¹⁾ nd V _g	$\frac{\text{NG}}{\text{V}_{\text{g}}}$ $\frac{\text{n}_{\text{nom}}}{\text{n}_{\text{max}}^{2)}}$ q_{V}	in ³ cm ³ rpm rpm gpm L/min	63 3.84 63 5000 5500 83.1 315	80 4.91 80.4 4500 5000 95.6 362	90 5.49 90 4500 5000 106.9 405	107 6.51 106.7 4000 4400 112.7 427	125 7.63 125 4000 4400 132.1 500	160 9.79 160.4 3600 4000 152.5 577	180 10.98 180 3600 4000 171.1 648	250 15.25 250 2700 - 178 675
Size Displacemer per revolution Speed maxim Input flow ³⁾ at n _{nom} an Torque ⁴⁾	nt geometric, n num ¹⁾ nd V _g $\Delta p = 5100 \text{ psi}$	$\frac{\text{NG}}{\text{V}_{\text{g}}}$ $\frac{\text{n}_{\text{nom}}}{\text{n}_{\text{max}}^{2)}}$ $\frac{\text{q}_{\text{V}}}{\text{T}}$	in ³ cm ³ rpm rpm gpm L/min lb-ft	63 3.84 63 5000 5500 83.1 315 259	80 4.91 80.4 4500 5000 95.6 362 330	90 5.49 90 4500 5000 106.9 405 371	107 6.51 106.7 4000 4400 112.7 427 438	125 7.63 125 4000 4400 132.1 500 513	160 9.79 160.4 3600 4000 152.5 577 659	180 10.98 180 3600 4000 171.1 648 740	250 15.25 250 2700 - 178 675 1030
Size Displacemen per revolution Speed maxim Input flow ³⁾ at n _{nom} an Torque ⁴⁾ at V _g and	t geometric, n num ¹⁾ d V _g $\Delta p = 5100 \text{ psi}$ $\Delta p = 350 \text{ bar}$	NG V _g n _{nom} n _{max} ²⁾ qv T	in ³ cm ³ rpm rpm gpm L/min lb-ft Nm	63 3.84 63 5000 5500 83.1 315 259 351	80 4.91 80.4 4500 5000 95.6 362 330 448	90 5.49 90 4500 5000 106.9 405 371 501	107 6.51 106.7 4000 112.7 427 438 594	125 7.63 125 4000 4400 132.1 500 513 696	160 9.79 160.4 3600 4000 152.5 577 659 893	180 10.98 180 3600 4000 171.1 648 740 1003	250 15.25 250 2700 - 178 675 1030 1393
Size Displacemen per revolution Speed maxim Input flow ³⁾ at n _{nom} an Torque ⁴⁾ at V _g and	t geometric, n num ¹⁾ nd V _g $\frac{\Delta p = 5100 \text{ psi}}{\Delta p = 350 \text{ bar}}$ $\Delta p = 5800 \text{ psi}$	$\frac{n_{nom}}{n_{max}^{2)}}$ $\frac{q_{V}}{T}$ T	in ³ cm ³ rpm rpm gpm L/min lb-ft Nm lb-ft	63 3.84 63 5000 5500 83.1 315 259 351 296	80 4.91 80.4 4500 5000 95.6 362 330 448 378	90 5.49 90 4500 5000 106.9 405 371 501 423	107 6.51 106.7 4000 112.7 427 438 594 501	125 7.63 125 4000 4400 132.1 500 513 696 587	160 9.79 160.4 3600 4000 152.5 577 659 893 753	180 10.98 180 3600 4000 171.1 648 740 1003 845	250 15.25 250 2700 - 178 675 1030 1393 -
Size Displacemer per revolution Speed maxim Input flow ³⁾ at n _{nom} an Torque ⁴⁾ at V _g and	tt geometric, n num ¹⁾ nd V _g $\frac{\Delta p = 5100 \text{ psi}}{\Delta p = 350 \text{ bar}}$ $\frac{\Delta p = 5800 \text{ psi}}{\Delta p = 400 \text{ bar}}$	$\frac{\text{NG}}{\text{V}_{\text{g}}}$ $\frac{\text{n}_{\text{nom}}}{\text{n}_{\text{max}}^{2^{2}}}$ $\frac{\text{q}_{\text{V}}}{\text{T}}$ $\frac{\text{T}}{\text{T}}$ $\frac{\text{T}}{\text{T}}$	in ³ cm ³ rpm rpm gpm L/min lb-ft Nm lb-ft Nm	63 3.84 63 5500 5500 83.1 315 259 351 296 401	80 4.91 80.4 4500 5000 95.6 362 330 448 378 512	90 5.49 90 4500 5000 106.9 405 371 501 423 573	107 6.51 106.7 4000 4400 112.7 427 438 594 501 679	125 7.63 125 4000 4400 132.1 500 513 696 587 796	160 9.79 160.4 3600 4000 152.5 577 659 893 753 1021	180 10.98 180 3600 4000 171.1 648 740 1003 845 1146	250 15.25 250 2700 - 178 675 1030 1393 - -
Size Displacemer per revolution Speed maxim Input flow ³⁾ at n _{nom} an Torque ⁴⁾ at V _g and Rotary stiffne	t geometric, n num ¹⁾ $\frac{\Delta p = 5100 \text{ psi}}{\Delta p = 350 \text{ bar}}$ $\frac{\Delta p = 5800 \text{ psi}}{\Delta p = 400 \text{ bar}}$ ess	$\begin{array}{c} \textbf{NG} \\ \textbf{V}_{g} \\ \hline \textbf{n}_{nom} \\ \textbf{n}_{max}^{2)} \\ \hline \textbf{q}_{V} \\ \hline \textbf{T} \\ \hline \textbf{C} \\ \end{array}$	in ³ cm ³ rpm gpm L/min lb-ft Nm lb-ft Nm kNm/rad	63 3.84 63 5000 5500 83.1 315 259 351 296 401 6.25	80 4.91 80.4 4500 5000 95.6 362 330 448 378 512 8.73	90 5.49 90 4500 5000 106.9 405 371 501 423 573 9.14	107 6.51 106.7 4000 112.7 427 438 594 501 679 11.2	125 7.63 125 4000 132.1 500 513 696 587 796 11.9	160 9.79 160.4 3600 4000 152.5 577 659 893 753 1021 17.4	180 10.98 180 3600 4000 171.1 648 740 1003 845 1146 18.2	250 15.25 250 2700 - 178 675 1030 1393 -
Size Displacemen per revolution Speed maxim Input flow ³⁾ at n _{nom} an Torque ⁴⁾ at V _g and Rotary stiffne Moment of in	the geometric, n num ¹⁾ nd V _g $\frac{\Delta p = 5100 \text{ psi}}{\Delta p = 350 \text{ bar}}$ $\frac{\Delta p = 5800 \text{ psi}}{\Delta p = 400 \text{ bar}}$ essementia for	NG Vg nnom nmax ²⁾ qv T T T T JGR	in ³ cm ³ rpm gpm L/min lb-ft Nm lb-ft Nm kNm/rad lbs-ft ²	63 3.84 63 5000 5500 83.1 315 259 351 296 401 6.25 0.0997	80 4.91 80.4 4500 95.6 362 330 448 378 512 8.73 0.1708	90 5.49 90 4500 5000 106.9 405 371 501 423 573 9.14 0.1708	107 6.51 106.7 4000 112.7 427 438 594 501 679 11.2 0.2753	125 7.63 125 4000 132.1 500 513 696 587 796 11.9 0.2753	160 9.79 160.4 3600 152.5 577 659 893 753 1021 17.4 0.5221	180 10.98 180 3600 4000 171.1 648 740 1003 845 1146 18.2 0.5221	250 15.25 250 2700 - 178 675 1030 1393 - - 7 3.1 1.4475
Size Displacemer per revolution Speed maxim Input flow ³⁾ at n _{nom} an Torque ⁴⁾ at V _g and Rotary stiffne Moment of irr rotary group	at geometric, n num ¹⁾ ad V _g $\frac{\Delta p = 5100 \text{ psi}}{\Delta p = 350 \text{ bar}}$ $\frac{\Delta p = 5800 \text{ psi}}{\Delta p = 400 \text{ bar}}$ ess hertia for	NG V _g n _{nom} n _{max²⁾ q_V T T T T T T C J_{GR}}	in ³ cm ³ rpm rpm gpm L/min lb-ft Nm lb-ft Nm lb-ft Nm lb-ft Nm lb-ft kNm/rad	63 3.84 63 5500 83.1 315 259 351 296 401 6.25 0.0997 0.0042	80 4.91 80.4 4500 5000 95.6 362 330 448 378 512 8.73 0.1708 0.0072	90 5.49 90 4500 5000 106.9 405 371 501 423 573 9.14 0.1708 0.0072	107 6.51 106.7 4000 112.7 427 438 594 501 679 11.2 0.2753 0.0116	125 7.63 125 4000 4400 132.1 500 513 696 587 796 11.9 0.2753 0.0116	160 9.79 160.4 3600 4000 152.5 577 659 893 753 1021 17.4 0.5221 0.0220	180 10.98 180 3600 4000 171.1 648 740 1003 845 1146 18.2 0.5221 0.0220	250 15.25 250 2700 - 178 675 1030 1393 - 7 73.1 1.4475 0.061
Size Displacemer per revolution Speed maxim Input flow ³⁾ at n _{nom} an Torque ⁴⁾ at V _g and Rotary stiffne Moment of irr rotary group Maximum and acceleration	ht geometric, n num ¹⁾ $\frac{\Delta p = 5100 \text{ psi}}{\Delta p = 350 \text{ bar}}$ $\frac{\Delta p = 5800 \text{ psi}}{\Delta p = 400 \text{ bar}}$ ess hertia for gular	NG V _g n _{nom} n _{max} ²⁾	in ³ cm ³ rpm gpm L/min lb-ft Nm lb-ft Nm kNm/rad lbs-ft ² kgm ² rad/s ²	63 3.84 63 5500 83.1 315 259 351 296 401 6.25 0.0997 0.0042 7500	80 4.91 80.4 4500 5000 95.6 362 330 448 378 512 8.73 0.1708 0.0072 6000	90 5.49 90 4500 5000 106.9 405 371 501 423 573 9.14 0.1708 0.0072 6000	107 6.51 106.7 4000 4400 112.7 427 438 594 501 679 11.2 0.2753 0.0116 4500	125 7.63 125 4000 4400 132.1 500 513 696 587 796 11.9 0.2753 0.0116 4500	160 9.79 160.4 3600 4000 152.5 577 659 893 753 1021 17.4 0.5221 0.0220 3500	180 10.98 180 3600 4000 171.1 648 740 1003 845 1146 18.2 0.5221 0.0220 3500	250 15.25 250 2700 - 178 675 1030 1393 - 73.1 1.4475 0.061 10000
Size Displacemen per revolution Speed maxim Input flow ³⁾ at n _{nom} an Torque ⁴⁾ at V _g and Rotary stiffne Moment of in rotary group Maximum and acceleration Case volume	at geometric, n num ¹⁾ ad V _g $\frac{\Delta p = 5100 \text{ psi}}{\Delta p = 350 \text{ bar}}$ $\frac{\Delta p = 5800 \text{ psi}}{\Delta p = 400 \text{ bar}}$ ess hertia for gular	$\frac{\text{NG}}{\text{V}_{\text{g}}}$ $\frac{\text{n}_{\text{nom}}}{\text{n}_{\text{max}}^{2)}}$ $\frac{\text{q}_{\text{V}}}{\text{T}}$ $\frac{\text{T}}{\text{T}}$ $\frac{\text{T}}{\text{G}}$ J_{GR} $\frac{\text{q}}{\text{V}}$	in ³ cm ³ rpm gpm L/min lb-ft Nm lb-ft Nm kNm/rad lbs-ft ² kgm ² rad/s ²	63 3.84 63 5000 5500 83.1 315 259 351 296 401 6.25 0.0997 0.0042 7500	80 4.91 80.4 4500 95.6 362 330 448 378 512 8.73 0.1708 0.0072 6000	90 5.49 90 4500 5000 106.9 405 371 501 423 573 9.14 0.1708 0.0072 6000 0.145	107 6.51 106.7 4000 112.7 427 594 594 501 679 11.2 0.2753 0.0116 4500 0.211	125 7.63 125 4000 132.1 500 513 696 587 796 11.9 0.2753 0.0116 4500	160 9.79 160.4 3600 152.5 577 659 893 753 1021 17.4 0.5221 0.0220 3500 0.291	180 10.98 180 3600 4000 171.1 648 740 1003 845 1146 18.2 0.5221 0.0220 3500 0.291	250 15.25 250 2700 - 178 675 1030 1393 - 7 73.1 1.4475 0.061 10000 0.660
Size Displacemer per revolution Speed maxim Input flow ³⁾ at n _{nom} an Torque ⁴⁾ at V _g and Rotary stiffne Moment of ir rotary group Maximum an acceleration Case volume	at geometric, n num ¹⁾ ad V _g $\frac{\Delta p = 5100 \text{ psi}}{\Delta p = 350 \text{ bar}}$ $\frac{\Delta p = 5800 \text{ psi}}{\Delta p = 400 \text{ bar}}$ ess hertia for gular	NG V _g n _{nom} n _{max} ²⁾	in ³ cm ³ rpm gpm L/min lb-ft Nm lb-ft Nm lb-ft Nm/rad lbs-ft ² kgm ² rad/s ² gal L	63 3.84 63 5500 83.1 315 259 351 296 401 6.25 0.0997 0.0042 7500 0.119 0.45	80 4.91 80.4 4500 5000 95.6 362 330 448 378 512 8.73 0.1708 0.0072 6000 0.145 0.55	90 5.49 90 4500 5000 106.9 405 371 501 423 573 9.14 0.1708 0.0072 6000 0.145 0.55	107 6.51 106.7 4000 4407 112.7 427 438 594 501 679 11.2 0.2753 0.0116 4500 0.211 0.8	125 7.63 125 4000 4400 132.1 500 513 696 587 796 11.9 0.2753 0.0116 4500 0.211 0.8	160 9.79 160.4 3600 4000 152.5 577 659 893 753 1021 17.4 0.5221 0.0220 3500 0.291 1.1	180 10.98 180 3600 4000 171.1 648 740 1003 845 1146 18.2 0.5221 0.0220 3500 0.291 1.1	250 15.25 250 2700 - 178 675 1030 1393 - 73.1 1.4475 0.061 10000 2.5
Size Displacemer per revolution Speed maxim Input flow ³⁾ at n _{nom} an Torque ⁴⁾ at V _g and Rotary stiffne Moment of irr rotary group Maximum and acceleration Case volume Mass (appro	at geometric, n num ¹⁾ ad V _g $\Delta p = 5100 \text{ psi}$ $\Delta p = 350 \text{ bar}$ $\Delta p = 350 \text{ bar}$ $\Delta p = 400 \text{ bar}$ ess hertia for gular (x.)	$\frac{NG}{V_g}$ $\frac{n_{nom}}{n_{max}^{2)}}$ $\frac{q_V}{T}$ T T T J_{GR} α V m	in ³ cm ³ rpm rpm Jpm L/min Ib-ft Ib-ft Ib-ft Ib-ft Ib-ft Ibs-ft ² kgm ² rad/s ² gal L Ibs	63 3.84 63 5000 5500 83.1 315 259 351 296 401 6.25 0.0997 0.0042 7500 0.119 0.45	80 4.91 80.4 4500 5000 95.6 362 330 448 378 512 8.73 0.1708 0.0072 6000 0.145 0.55 51	90 5.49 90 4500 5000 106.9 405 371 501 423 573 9.14 0.1708 0.0072 6000 0.145 0.55 51	107 6.51 106.7 4000 4400 112.7 427 594 594 501 679 11.2 0.2753 0.0116 4500 0.211 0.8 71	125 7.63 125 4000 4400 132.1 500 513 696 587 796 11.9 0.2753 0.0116 4500 0.211 0.8 71	160 9.79 160.4 3600 4000 152.5 577 659 893 753 1021 17.4 0.5221 0.0220 3500 0.291 1.1 99	180 10.98 180 3600 4000 171.1 648 740 1003 845 1146 0.5221 0.5221 3500 99	250 15.25 250 2700 - 178 675 1030 1393 - 7 3.1 1.393 - 7 3.1 1.4475 0.061 10000 2.5 161

1) The values are valid:

- for the optimum viscosity range from

 v_{opt} = 170 to 74 SUS (36 to 16 mm²/s)

- with hydraulic fluid based on mineral oils

2) Intermittent maximum speed: overspeed for unload and overhauling processes, t < 5 s and Δp < 2200 psi (150 bar)

3) Restriction of input flow with counterbalance valve, see page 32

4) Torque without radial force, with radial force see page 9

Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, with respect to speed variation, reduced angular acceleration as a function of the frequency and the permissible start up angular acceleration (lower than the maximum angular acceleration) can be found in data sheet RE 90261.

Determining the operating characteristics

Input flow
$$q_v = \frac{V_g \cdot n}{231 \cdot \eta_v}$$
 gpm $\left(q_v = \frac{V_g \cdot n}{1000 \cdot \eta_v} \right)$ L/min

$$\label{eq:speed} Speed \qquad n = \frac{q_v \cdot 231 \cdot \eta_v}{V_g} \qquad \qquad rpm \quad \left(\begin{array}{cc} n & = \frac{q_v \cdot 1000 \cdot \eta_v}{V_g} \end{array} \right) \\ \end{array}$$

Torque

que
$$T = \frac{V_g \cdot \Delta p \cdot \eta_{mh}}{24 \cdot \pi}$$
 Ib-ft $\left(T = \frac{V_g \cdot \Delta p \cdot \eta_{mh}}{20 \cdot \pi}\right)$

Power
$$P = \frac{2 \pi \cdot T \cdot n}{33\ 000} = \frac{q_v \cdot \Delta p \cdot \eta_t}{1714} HP \left(P = \frac{2 \pi \cdot T \cdot n}{60\ 000} = \frac{q_v \cdot \Delta p \cdot \eta_t}{600} kW \right)$$

V_g = Displacement per revolution in in³ (cm³)

 Δp = Differential pressure in psi (bar)

n = Speed in rpm

 η_v = Volumetric efficiency

 η_{mh} = Mechanical-hydraulic efficiency

 η_t = Total efficiency ($\eta_t = \eta_v \bullet \eta_{mh}$)

Effect of radial force F_q on the service life of bearings

By selecting a suitable direction of radial force F_q , the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

	Toothed gear drive	V-belt output
NG	φopt	φopt
10 to 180	± 70°	± 45°
250	± 45°	± 70°

Permissible radial and axial forces of the drive shafts

(splined shaft and parallel keyed shaft)

Size	NG		10	10	10	12	12	12	16 ³⁾	16
Drive shaft	Ø	in	7/8	0.79	0.98	7/8	0.79	0.98	7/8	0.98
		mm	-	20	25	-	20	25	-	25
Maximum	F _{q max}	lbf	629.5	674.4	719.4	741.9	674.4	719.4	966.7	719.4
radial force ¹⁾		kN	2.8	3.0	3.2	3.3	3.0	3.2	4.3	3.2
(from shaft $\rightarrow a$	а	in	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63
$\frac{ \mathbf{a} ^{\mathbf{L}}}{ \mathbf{a} ^{\mathbf{L}}}$ (from shaft		mm	16.8	16	16	16.8	16	16	16.8	16
(from shaft $ a ^{\underline{a}}$ collar) with permissible torque $$ permissible pressure Δp	T _{max}	lb-ft	47.9	49	47.9	56.1	56.1	56.9	72.3	73.8
		Nm	65	66	65	76	76	76	98	100
\triangleq permissible pressure Δ p	Δp_{perm}	psi	5800	5800	5800	5800	5800	5800	5550	5800
		bar	400	400	400	400	400	400	385	400
Maximum	-F _{ax max}	lbf	71.9	71.9	71.9	71.9	71.9	71.9	71.9	71.9
$\begin{array}{c} \text{Maximum} \\ \text{axial force}^{2)} & \text{F}_{ax} \pm \pm \boxed{\end{array}$		N	320	320	320	320	320	320	320	320
_	+F _{ax max}	Ν	0	0	0	0	0	0	0	0
Permissible axial force per	±F _{ax perm/bar}	lbf/psi	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
psi (bar) operating pressure		N/bar	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Size	NG		23	23	23	28	28	28	32	32
Size Drive shaft	NG ø	in	23 1 1/4	23 0.98	23 1.18	28 1 1/4	28 0.98	28 1.18	32 1 1/4	32 1.18
Size Drive shaft	NG Ø	in mm	23 1 1/4 -	23 0.98 25	23 1.18 30	28 1 1/4	28 0.98 25	28 1.18 30	32 1 1/4	32 1.18 30
conar) with permissible torque \triangleq permissible pressure Δp Maximum axial force ²) $F_{ax} \pm \pm \pm \ddagger $	NG Ø F _{q max}	in mm Ibf	23 1 1/4 - 809.3	23 0.98 25 1281.4	23 1.18 30 1213.9	28 1 1/4 - 989.1	28 0.98 25 1281.4	28 1.18 30 1213.9	32 1 1/4 - 1146.5	32 1.18 30 1213.9
Size Drive shaft Maximum radial force ¹⁾ at distance a	NG Ø F _{q max}	in mm Ibf kN	23 1 1/4 - 809.3 3.6	23 0.98 25 1281.4 5.7	23 1.18 30 1213.9 5.4	28 1 1/4 - 989.1 4.4	28 0.98 25 1281.4 5.7	28 1.18 30 1213.9 5.4	32 1 1/4 - 1146.5 5.1	32 1.18 30 1213.9 5.4
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft	NG Ø F _{q max}	in mm Ibf kN in	23 1 1/4 - 809.3 3.6 0.94	23 0.98 25 1281.4 5.7 0.63	23 1.18 30 1213.9 5.4 0.63	28 1 1/4 - 989.1 4.4 0.94	28 0.98 25 1281.4 5.7 0.63	28 1.18 30 1213.9 5.4 0.63	32 1 1/4 - 1146.5 5.1 0.94	32 1.18 30 1213.9 5.4 0.63
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar)	NG ø F _{q max} a	in mm Ibf kN in mm	23 1 1/4 - 809.3 3.6 0.94 24	23 0.98 25 1281.4 5.7 0.63 16	23 1.18 30 1213.9 5.4 0.63 16	28 1 1/4 - 989.1 4.4 0.94 24	28 0.98 25 1281.4 5.7 0.63 16	28 1.18 30 1213.9 5.4 0.63 16	32 1 1/4 - 1146.5 5.1 0.94 24	32 1.18 30 1213.9 5.4 0.63 16
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque	NG Ø F _{q max} a T _{max}	in mm Ibf kN in mm Ib-ft	23 1 1/4 - 809.3 3.6 0.94 24 106.2	23 0.98 25 1281.4 5.7 0.63 16 108	23 1.18 30 1213.9 5.4 0.63 16 106.2	28 1 1/4 - 989.1 4.4 0.94 24 131.3	28 0.98 25 1281.4 5.7 0.63 16 132	28 1.18 30 1213.9 5.4 0.63 16 131.3	32 1 1/4 - 1146.5 5.1 0.94 24 150.5	32 1.18 30 1213.9 5.4 0.63 16 150.5
SizeDrive shaftMaximum radial force1) at distance a (from shaft collar)with permissible torque	NG Ø F _{q max} a T _{max}	in mm lbf kN in mm lb-ft Nm	23 1 1/4 - 809.3 3.6 0.94 24 106.2 144	23 0.98 25 1281.4 5.7 0.63 16 108 146	23 1.18 30 1213.9 5.4 0.63 16 106.2 144	28 1 1/4 - 989.1 4.4 0.94 24 131.3 178	28 0.98 25 1281.4 5.7 0.63 16 132 179	28 1.18 30 1213.9 5.4 0.63 16 131.3 178	32 1 1/4 - 1146.5 5.1 0.94 24 150.5 204	32 1.18 30 1213.9 5.4 0.63 16 150.5 204
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque △ permissible pressure Δp	NG Ø F _{q max} a T _{max}	in mm Ibf kN in mm Ib-ft Nm psi	23 1 1/4 - 809.3 3.6 0.94 24 106.2 144 5800	23 0.98 25 1281.4 5.7 0.63 16 108 146 5800	23 1.18 30 1213.9 5.4 0.63 16 106.2 144 5800	28 1 1/4 - 989.1 4.4 0.94 24 131.3 178 5800	28 0.98 25 1281.4 5.7 0.63 16 132 179 5800	28 1.18 30 1213.9 5.4 0.63 16 131.3 178 5800	32 1 1/4 - 1146.5 5.1 0.94 24 150.5 204 5800	32 1.18 30 1213.9 5.4 0.63 16 150.5 204 5800
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque \triangle permissible pressure Δp	NG Ø F _{q max} a T _{max}	in mm lbf kN in mm lb-ft Nm psi bar	23 1 1/4 - 809.3 3.6 0.94 24 106.2 144 5800 400	23 0.98 25 1281.4 5.7 0.63 16 108 146 5800 400	23 1.18 30 1213.9 5.4 0.63 16 106.2 144 5800 400	28 1 1/4 - 989.1 4.4 0.94 24 131.3 178 5800 400	28 0.98 25 1281.4 5.7 0.63 16 132 179 5800 400	28 1.18 30 1213.9 5.4 0.63 16 131.3 178 5800 400	32 1 1/4 - 1146.5 5.1 0.94 24 150.5 204 5800 400	32 1.18 30 1213.9 5.4 0.63 16 150.5 204 5800 400
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque \triangleq permissible pressure Δp Maximum	NG Ø F _{q max} a T _{max} Δp _{perm} -F _{ax max}	in mm lbf kN in mm lb-ft Nm psi bar lbf	23 1 1/4 - 809.3 3.6 0.94 24 106.2 144 5800 400 112.2	23 0.98 25 1281.4 5.7 0.63 16 108 146 5800 400 112.2	23 1.18 30 1213.9 5.4 0.63 16 106.2 144 5800 400 112.2	28 1 1/4 - 989.1 4.4 0.94 24 131.3 178 5800 400 112.2	28 0.98 25 1281.4 5.7 0.63 16 132 179 5800 400 112.2	28 1.18 30 1213.9 5.4 0.63 16 131.3 178 5800 400 112.2	32 1 1/4 - 1146.5 5.1 0.94 24 150.5 204 5800 400 112.2	32 1.18 30 1213.9 5.4 0.63 16 150.5 204 5800 400 112.2
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque \triangleq permissible pressure Δp Maximum axial force ²⁾ $F_{ax} \pm \pm = \bigoplus$	NG Ø F _{q max} a T _{max} Δp _{perm} -F _{ax max}	in mm lbf kN in mm lb-ft Nm psi bar lbf N	23 1 1/4 - 809.3 3.6 0.94 24 106.2 144 5800 400 112.2 500	23 0.98 25 1281.4 5.7 0.63 16 108 146 5800 400 112.2 500	23 1.18 30 1213.9 5.4 0.63 16 106.2 144 5800 400 112.2 500	28 1 1/4 - 989.1 4.4 0.94 24 131.3 178 5800 400 112.2 500	28 0.98 25 1281.4 5.7 0.63 16 132 179 5800 400 112.2 500	28 1.18 30 1213.9 5.4 0.63 16 131.3 178 5800 400 112.2 500	32 1 1/4 - 1146.5 5.1 0.94 24 150.5 204 5800 400 112.2 500	32 1.18 30 1213.9 5.4 0.63 16 150.5 204 5800 400 112.2 500
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque \triangle permissible pressure Δp Maximum axial force ²⁾ $F_{ax} \pm \pm = \Box$	NG Ø F _{q max} a T _{max} Δp perm -F _{ax max} +F _{ax max}	in mm lbf kN in mm lb-ft Nm psi bar lbf N N	23 1 1/4 - 809.3 3.6 0.94 24 106.2 144 5800 400 112.2 500 0	23 0.98 25 1281.4 5.7 0.63 16 108 146 5800 400 112.2 500 0	23 1.18 30 1213.9 5.4 0.63 16 106.2 144 5800 400 112.2 500 0	28 1 1/4 - 989.1 4.4 0.94 24 131.3 178 5800 400 112.2 500 0	28 0.98 25 1281.4 5.7 0.63 16 132 179 5800 400 112.2 500 0	28 1.18 30 1213.9 5.4 0.63 16 131.3 178 5800 400 112.2 500 0	32 1 1/4 - 1146.5 5.1 0.94 24 150.5 204 5800 400 112.2 500 0	32 1.18 30 1213.9 5.4 0.63 16 150.5 204 5800 400 112.2 500 0
Size Drive shaft Maximum radial force1) at distance a (from shaft collar) with permissible torque \triangle permissible pressure Δp Maximum axial force2) $F_{ax} \pm \pm = \bigcirc$ Permissible axial force per	NG Ø F _{q max} a T _{max} Δp perm -F _{ax max} +F _{ax max} ±F _{ax perm/bar}	in mm lbf kN in mm lb-ft Nm psi bar lbf N N N lbf/psi	23 1 1/4 - 809.3 3.6 0.94 24 106.2 144 5800 400 112.2 500 0 0.08	23 0.98 25 1281.4 5.7 0.63 16 108 146 5800 400 112.2 500 0 0.08	23 1.18 30 1213.9 5.4 0.63 16 106.2 144 5800 400 112.2 500 0 0.08	28 1 1/4 - 989.1 4.4 0.94 24 131.3 178 5800 400 112.2 500 0 0.08	28 0.98 25 1281.4 5.7 0.63 16 132 179 5800 400 112.2 500 0 0.08	28 1.18 30 1213.9 5.4 0.63 16 131.3 178 5800 400 112.2 500 0 0.08	32 1 1/4 - 1146.5 5.1 0.94 24 150.5 204 5800 400 112.2 500 0 0.08	32 1.18 30 1213.9 5.4 0.63 16 150.5 204 5800 400 112.2 500 0 0.08

1) With intermittent operation

Note

- Influence of the direction of the permissible axial force:
 - $+F_{ax max}$ = Increase in service life of bearings
 - $-F_{ax max}$ = Reduction in service life of bearings (avoid)
- 2) Maximum permissible axial force during standstill or when the axial piston unit is operating in non-pressurized condition.
 a) Postricted technical data
- 3) Restricted technical data

Size	NG		45	45	56 ³⁾	56	56	56	63 ³⁾	63	63
Drive shaft	Ø	in	1 1/4	1.18	1 1/4	1 3/8	1.18	1.37	1 1/4	1 3/8	1.38
		mm	-	30	-	_	30	35	_	_	35
Maximum	F _{q max}	lbf	1641	1709	1709	2068	2136	2045	1708	2315	2046
radial force ¹⁾		kN	7.3	7.6	7.6	9.2	9.5	9.1	7.6	10.3	9.1
radial force ¹⁾ at distance a (from shaft collar)	а	in	0.94	0.71	0.94	0.94	0.71	0.71	0.94	0.94	0.71
collar)		mm	24	18	24	24	18	18	24	24	18
with permissible torque	T _{max}	lb-ft	214	214	223	263	263	263	223	295	295
		Nm	290	290	302	356	357	356	302	400	400
\triangleq permissible pressure Δ p	Δp_{perm}	psi	5800	5800	4950	5800	5800	5800	4350	5800	5800
		bar	400	400	339	400	400	400	301	400	400
Maximum	-F _{ax max}	lbf	142	142	180	180	180	180	180	180	180
axial force ²⁾ Fax [±] ∓=		Ν	630	630	800	800	800	800	800	800	800
	+F _{ax max}	Ν	0	0	0	0	0	0	0	0	0
Permissible axial force per	+F _{ax perm/bar}	lbf/psi	0.11	0.11	0.13	0.13	0.13	0.13	0.13	0.13	0.13
psi (bar) operating pressure		N/bar	7.0	7.0	8.7	8.7	8.7	8.7	8.7	8.7	8.7
Size	NG		80 ³⁾	80 ³⁾	80	80	90 ³⁾	90 ³⁾	90	107 ³⁾	107
Size Drive shaft	NG ø	in	80 ³⁾ 1 1/4	80 ³⁾ 1 3/8	80 1.37	80 1.57	90 ³⁾ 1 1/4	90 ³⁾ 1 3/8	90 1.57	107 ³⁾ 1 1/2	107 1 3/4
Size Drive shaft	NG ø	in mm	80 ³⁾ 1 1/4 -	80 ³⁾ 1 3/8	80 1.37 35	80 1.57 40	90 ³⁾ 1 1/4	90 ³⁾ 1 3/8 -	90 1.57 40	107 ³⁾ 1 1/2	107 1 3/4
Maximum axial force ²) $F_{ax} \pm \pm = \bigoplus$ Permissible axial force per psi (bar) operating pressure Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft	NG ø F _{q max}	in mm Ibf	80 ³⁾ 1 1/4 - 1709	80 ³⁾ 1 3/8 - 2608	80 1.37 35 2608	80 1.57 40 2563	90 ³⁾ 1 1/4 - 1709	90 ³⁾ 1 3/8 - 2608	90 1.57 40 2563	107 ³⁾ 1 1/2 - 2788	107 1 3/4 - 2743
	NG Ø F _{q max}	in mm Ibf kN	80 ³⁾ 1 1/4 - 1709 7.6	80 ³⁾ 1 3/8 - 2608 11.6	80 1.37 35 2608 11.6	80 1.57 40 2563 11.4	90 ³⁾ 1 1/4 - 1709 7.6	90 ³⁾ 1 3/8 - 2608 11.6	90 1.57 40 2563 11.4	107 ³⁾ 1 1/2 - 2788 12.4	107 1 3/4 - 2743 12.2
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft	NG Ø F _{q max}	in mm Ibf kN in	80 ³⁾ 1 1/4 - 1709 7.6 0.94	80 ³⁾ 1 3/8 - 2608 11.6 0.94	80 1.37 35 2608 11.6 0.79	80 1.57 40 2563 11.4 0,79	90 ³⁾ 1 1/4 - 1709 7.6 0.94	90 ³⁾ 1 3/8 - 2608 11.6 0.94	90 1.57 40 2563 11.4 0.79	107 ³⁾ 1 1/2 - 2788 12.4 1.06	107 1 3/4 - 2743 12.2 1.32
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar)	NG Ø F _{q max} a	in mm Ibf kN in mm	80 ³⁾ 1 1/4 - 1709 7.6 0.94 24	80 ³⁾ 1 3/8 - 2608 11.6 0.94 24	80 1.37 35 2608 11.6 0.79 20	80 1.57 40 2563 11.4 0,79 20	90 ³⁾ 1 1/4 - 1709 7.6 0.94 24	90 ³⁾ 1 3/8 - 2608 11.6 0.94 24	90 1.57 40 2563 11.4 0.79 20	107 ³⁾ 1 1/2 - 2788 12.4 1.06 27	107 1 3/4 - 2743 12.2 1.32 33.5
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque	NG Ø F _{q max} a T _{max}	in mm Ibf kN in mm Ib-ft	80 ³⁾ 1 1/4 - 1709 7.6 0.94 24 223	80 ³⁾ 1 3/8 - 2608 11.6 0.94 24 332	80 1.37 35 2608 11.6 0.79 20 378	80 1.57 40 2563 11.4 0,79 20 378	90 ³⁾ 1 1/4 - 1709 7.6 0.94 24 223	90 ³⁾ 1 3/8 - 2608 11.6 0.94 24 332	90 1.57 40 2563 11.4 0.79 20 423	107 ³⁾ 1 1/2 - 2788 12.4 1.06 27 438	107 1 3/4 - 2743 12.2 1.32 33.5 502
SizeDrive shaftMaximum radial force10 at distance a (from shaft collar)with permissible torque	NG ø F _{q max} a T _{max}	in mm lbf kN in mm lb-ft Nm	80 ³⁾ 1 1/4 - 1709 7.6 0.94 24 223 302	80 ³⁾ 1 3/8 - 2608 11.6 0.94 24 332 450	80 1.37 35 2608 11.6 0.79 20 378 512	80 1.57 40 2563 11.4 0,79 20 378 512	90 ³⁾ 1 1/4 - 1709 7.6 0.94 24 223 302	90 ³⁾ 1 3/8 - 2608 11.6 0.94 24 332 450	90 1.57 40 2563 11.4 0.79 20 423 573	107 ³⁾ 1 1/2 - 2788 12.4 1.06 27 438 594	107 1 3/4 - 2743 12.2 1.32 33.5 502 680
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque △ permissible pressure Δp	NG Ø F _{q max} a T _{max}	in mm lbf kN in mm lb-ft Nm psi	80 ³⁾ 1 1/4 - 1709 7.6 0.94 24 223 302 3450	80 ³⁾ 1 3/8 - 2608 11.6 0.94 24 332 450 5100	80 1.37 35 2608 11.6 0.79 20 378 512 5800	80 1.57 40 2563 11.4 0,79 20 378 512 5800	90 ³⁾ 1 1/4 - 1709 7.6 0.94 24 223 302 3050	90 ³⁾ 1 3/8 - 2608 11.6 0.94 24 332 450 4550	90 1.57 40 2563 11.4 0.79 20 423 573 5800	107 ³⁾ 1 1/2 - 2788 12.4 1.06 27 438 594 5100	107 1 3/4 - 2743 12.2 1.32 33.5 502 680 5800
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque \triangle permissible pressure Δp	NG Ø F _{q max} a T _{max}	in mm lbf kN in mm lb-ft Nm psi bar	80 ³⁾ 1 1/4 - 1709 7.6 0.94 24 223 302 3450 237	80 ³⁾ 1 3/8 - 2608 11.6 0.94 24 332 450 5100 352	80 1.37 35 2608 11.6 0.79 20 378 512 5800 400	80 1.57 40 2563 11.4 0,79 20 378 512 5800 400	90 ³⁾ 1 1/4 - 1709 7.6 0.94 24 223 302 302 3050 211	90 ³⁾ 1 3/8 - 2608 11.6 0.94 24 332 450 4550 314	90 1.57 40 2563 11.4 0.79 20 423 573 5800 400	107 ³⁾ 1 1/2 - 2788 12.4 1.06 27 438 594 5100 349	107 1 3/4 - 2743 12.2 1.32 33.5 502 680 5800 400
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque \triangleq permissible pressure Δp Maximum	NG ø F _{q max} a T _{max} Δp perm -F _{ax max}	in mm lbf kN in mm lb-ft Nm psi bar lbf	80 ³⁾ 1 1/4 - 1709 7.6 0.94 24 223 302 3450 237 225	80 ³⁾ 1 3/8 - 2608 11.6 0.94 24 332 450 5100 352 225	80 1.37 35 2608 11.6 0.79 20 378 512 5800 400 225	80 1.57 40 2563 11.4 0,79 20 378 512 5800 400 225	90 ³⁾ 1 1/4 - 1709 7.6 0.94 24 223 302 3020 211 225	90 ³⁾ 1 3/8 - 2608 11.6 0.94 24 332 450 4550 314 225	90 1.57 40 2563 11.4 0.79 20 423 573 5800 400 225	107 ³⁾ 1 1/2 - 2788 12.4 1.06 27 438 594 5100 349 281	107 1 3/4 - 2743 12.2 1.32 33.5 502 680 5800 400 281
Size Drive shaft Maximum radial force10 at distance a (from shaft collar) with permissible torque \triangle permissible pressure Δp Maximum axial force20 $F_{ax} \pm \pm \oplus$	NG Ø F _{q max} a T _{max} Δp perm -F _{ax max}	in mm lbf kN in mm lb-ft Nm psi bar lbf N	80 ³⁾ 1 1/4 - 1709 7.6 0.94 24 223 302 3450 237 225 1000	80 ³⁾ 1 3/8 - 2608 11.6 0.94 24 332 450 5100 352 225 1000	80 1.37 35 2608 11.6 0.79 20 378 512 5800 400 225 1000	80 1.57 40 2563 11.4 0,79 20 378 512 5800 400 225 1000	90 ³⁾ 1 1/4 - 1709 7.6 0.94 24 223 302 302 302 211 225 1000	90 ³⁾ 1 3/8 - 2608 11.6 0.94 24 332 450 4550 314 225 1000	90 1.57 40 2563 11.4 0.79 20 423 573 573 5800 400 225 1000	107 ³⁾ 1 1/2 - 2788 12.4 1.06 27 438 594 5100 349 281 1250	107 1 3/4 - 2743 12.2 1.32 33.5 502 680 5800 400 281 1250
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque \triangle permissible pressure Δp Maximum axial force ²⁾ $F_{ax} \pm \pm = \bigcirc$	NG Ø F _{q max} a T _{max} Δp perm -F _{ax max}	in mm lbf kN in mm lb-ft Nm psi bar lbf N	80 ³⁾ 1 1/4 - 1709 7.6 0.94 24 223 302 3450 237 225 1000 0	80 ³⁾ 1 3/8 - 2608 11.6 0.94 24 332 450 5100 352 225 1000 0	80 1.37 35 2608 11.6 0.79 20 378 512 5800 400 225 1000 0	80 1.57 40 2563 11.4 0,79 20 378 512 5800 400 225 1000 0	90 ³⁾ 1 1/4 - 1709 7.6 0.94 24 223 302 3020 211 225 1000 0	90 ³⁾ 1 3/8 - 2608 11.6 0.94 24 332 450 4550 314 225 1000 0	90 1.57 40 2563 11.4 0.79 20 423 573 5800 400 225 1000 0	107 ³⁾ 1 1/2 - 2788 12.4 1.06 27 438 594 5100 349 281 1250 0	107 1 3/4 - 2743 12.2 1.32 33.5 502 680 5800 400 281 1250 0
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque $ rightarrow$ permissible pressure Δp Maximum axial force ²⁾ $F_{ax} \pm \pm = \bigoplus$ Permissible axial force per	NG Ø F _{q max} a T _{max} Δp perm -F _{ax max} +F _{ax perm/bar}	in mm lbf kN in mm lb-ft bar bar bar lbf N N N lbf/psi	80 ³⁾ 1 1/4 - 1709 7.6 0.94 24 223 302 3450 237 225 1000 0 0.16	80 ³⁾ 1 3/8 - 2608 11.6 0.94 24 332 450 5100 352 225 1000 0 0.16	80 1.37 35 2608 11.6 0.79 20 378 512 5800 400 225 1000 0 0.16	80 1.57 40 2563 11.4 0,79 20 378 512 5800 400 225 1000 0 0.16	90 ³⁾ 1 1/4 - 1709 7.6 0.94 24 223 302 3050 211 225 1000 0 0.16	90 ³⁾ 1 3/8 - 2608 11.6 0.94 24 332 450 4550 314 225 1000 0 0.16	90 1.57 40 2563 11.4 0.79 20 423 573 5800 400 225 1000 0 0.16	107 ³⁾ 1 1/2 - 2788 12.4 1.06 27 438 594 594 5100 349 281 1250 0 0.20	107 1 3/4 - 2743 12.2 1.32 33.5 502 680 5800 400 281 1250 0 0.20

1) With intermittent operation

2) Maximum permissible axial force during standstill or when the

axial piston unit is operating in non-pressurized condition.

3) Restricted technical data

Note

Influence of the direction of the permissible axial force:

 $+F_{ax max}$ = Increase in service life of bearings

 $-F_{ax max}$ = Reduction in service life of bearings (avoid)

Size	NG		107	107	125 ³⁾	125	125	160 ³⁾	160	160	180 ³⁾	180
Drive shaft	Ø	in	1.57	1.77	1 1/2	1 3/4	1.77	1 3/4	1.77	1.97	1 3/4	1.97
		mm	40	45	-	-	45	-	45	50	-	50
Maximum F _g _	F _{q max}	lbf	3057	3169	2788	3215	3170	3350	4069	4114	3350	4114
radial force ¹⁾		kN	13.6	14.1	12.4	14.3	14.1	14.9	18.1	18.3	14.9	18.3
(from shaft	а	in	0.79	0.79	1.06	1.32	0.79	1.32	0.98	0.98	1.32	0.98
collar)		mm	20	20	27	33.5	20	33.5	25	25	33.5	25
with permissible torque	T _{max}	lb-ft	501	502	438	587	587	611	753	749	611	844
		Nm	679	680	594	796	796	828	1021	1016	828	1144
\triangleq permissible pressure Δ p	Δp_{perm}	psi	5800	5800	4350	5800	5800	4700	5800	5800	4200	5800
		bar	400	400	298	400	400	325	400	400	289	400
Maximum	-F _{ax max}	lbf	281	281	281	281	281	360	360	360	360	360
axial force ²⁾ $\Gamma_{ax} \pm \mp \mp$		Ν	1250	1250	1250	1250	1250	1600	1600	1600	1600	1600
	+F _{ax max}	Ν	0	0	0	0	0	0	0	0	0	0
Permissible axial force per	±F _{ax perm/bar}	lbf/psi	0.20	0.20	0.20	0.20	0.20	0.26	0.26	0.26	0.26	0.26
psi (bar) operating pressure		N/bar	12.9	12.9	12.9	12.9	12.9	16.7	16.7	16.7	16.7	16.7
Size	NG		250									
Size Drive shaft	NG ø	in	250 1.97									
Size Drive shaft	NG Ø	in mm	250 1.97 50									
Size Drive shaft Maximum	NG ø F _{g max}	in mm Ibf	250 1.97 50 270 ⁵⁾									
Size Drive shaft Maximum radial force ¹⁾	NG ø F _{q max}	in mm Ibf kN	250 1.97 50 270 ⁵⁾ 1.2 ⁵⁾									
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft	NG Ø F _{q max}	in mm Ibf kN in	250 1.97 50 270 ⁵⁾ 1.2 ⁵⁾ 1.61									
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar)	NG Ø F _{q max} a	in mm Ibf kN in mm	250 1.97 50 270 ⁵⁾ 1.2 ⁵⁾ 1.61 41									
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque	NG Ø F _{q max} a T _{max}	in mm Ibf kN in mm Ib-ft	250 1.97 50 270 ⁵⁾ 1.2 ⁵⁾ 1.61 41 1027									
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque	NG Ø F _{q max} a T _{max}	in mm lbf kN in mm lb-ft Nm	250 1.97 50 270 ⁵⁾ 1.2 ⁵⁾ 1.61 41 1027 1393									
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque \triangleq permissible pressure Δp	NG Ø F _{q max} a T _{max}	in mm lbf kN in mm lb-ft Nm psi	250 1.97 50 270 ⁵⁾ 1.2 ⁵⁾ 1.61 41 1027 1393 5100									
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque \triangle permissible pressure Δp	NG Ø F _{q max} a T _{max} Δp _{perm}	in mm lbf kN in mm lb-ft Nm psi bar	250 1.97 50 270 ⁵⁾ 1.2 ⁵⁾ 1.61 41 1027 1393 5100 350									
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque \triangleq permissible pressure Δp Maximum	NG Ø F _{q max} a T _{max} Δp _{perm} -F _{ax max}	in mm lbf kN in mm lb-ft Nm psi bar lbf	250 1.97 50 270 ⁵⁾ 1.2 ⁵⁾ 1.61 41 1027 1393 5100 350 450									
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque \triangle permissible pressure Δp Maximum axial force ²⁾ $F_{ax} \pm \pm = [f]$	NG Ø F _{q max} a T _{max} Δp _{perm} -F _{ax max}	in mm lbf kN in mm lb-ft Nm psi bar lbf N	250 1.97 50 270 ⁵⁾ 1.2 ⁵⁾ 1.61 41 1027 1393 5100 350 450 2000									
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque \triangle permissible pressure Δp Maximum axial force ²⁾ $F_{ax} \pm \pm \blacksquare$	NG Ø F _{q max} a T _{max} Δp perm -F _{ax max} +F _{ax max}	in mm lbf kN in mm lb-ft Nm psi bar lbf N N	250 1.97 50 270 ⁵⁾ 1.2 ⁵⁾ 1.61 41 1027 1393 5100 350 450 2000 0									
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque $ rightarrow$ permissible pressure Δp Maximum axial force ²⁾ $F_{ax} \pm \pm = \bigoplus$ Permissible axial force per	NG Ø F _{q max} a T _{max} Δp perm -F _{ax max} +F _{ax max} ±F _{ax perm/bar}	in mm lbf kN in mm lb-ft Nm psi bar lbf N N N lbf/psi	250 1.97 50 270 ⁵⁾ 1.2 ⁵⁾ 1.61 41 1027 1393 5100 350 450 2000 0 4)									

1) With intermittent operation

2) Maximum permissible axial force during standstill or when the axial piston unit is operating in non-pressurized condition.

3) Restricted technical data

4) Please contact us.

5) When at a standstill or when axial piston unit operating in non-pressurized conditions. Higher forces are permissible when under pressure, please contact us.

Note

Influence of the direction of the permissible axial force:

 $+F_{ax max}$ = Increase in service life of bearings

 $-F_{ax max}$ = Reduction in service life of bearings (avoid)

Dimensions sizes 10, 12, 16 - SAE design

Before finalizing your design, request a binding installation drawing. Dimensions in inch and (millimeters).

Shaft ends

Ports

Designation	Port for	Standard ⁶⁾	Size ⁴⁾	p _{max} [psi (bar)] ⁵⁾	State ⁸⁾
А, В	Service line (see port plates)				
T ₁	Drain line	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	45 (3)	O ⁷⁾
T ₂	Drain line	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	45 (3)	X ⁷⁾

1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Thread according to ASME B1.1

3) Center bore according to DIN 332 (thread according to DIN 13)

4) Observe the general instructions on page 38 for the maximum tightening torques.

5) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 36)
- O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Dimensions size 10, 12, 16 - SAE design

Before finalizing your design, request a binding installation drawing. Dimensions in inch and (millimeters).

Location of the service line ports on the port plates

53 - Threaded ports at side, opposite

Plate	Designation	Port for	Standard ³⁾	Size ¹⁾	p _{max} [psi (bar)] ²⁾	State ⁴⁾
53	А, В	Service line	ISO11926	1 1/16-12UN-2B; 0.79 (20) deep	6500 (450)	0

1) Observe the general instructions on page 38 for the maximum tightening torques

2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

3) The spot face can be deeper than specified in the appropriate standard.

4) O = Must be connected (plugged on delivery)

Dimensions sizes 23, 28, 32 - SAE design

Before finalizing your design, request a binding installation drawing. Dimensions in inch and (millimeters).

Shaft ends

Ports

Designation	Port for	Standard	Size ⁴⁾	p _{max} [psi (bar)] ⁵⁾	State ⁸⁾
А, В	Service line (see port plates)				
T ₁	Drain line	ISO 11926 ⁶⁾	3/4-16UNF-2B; 0.59 (15) deep	45 (3)	O ⁷⁾
T ₂	Drain line	ISO 11926 ⁶⁾	3/4-16UNF-2B; 0.59 (15) deep	45 (3)	X ⁷⁾

1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Thread according to ASME B1.1

3) Center bore according to DIN 332 (thread according to DIN 13)

4) Observe the general instructions on page 38 for the maximum tightening torques.

- 5) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) Depending on installation position, T1 or T2 must be connected (see also installation instructions on page 36)
- O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Dimensions sizes 23, 28, 32 - SAE design

Before finalizing your design, request a binding installation drawing. Dimensions in inch and (millimeters).

Location of the service line ports on the port plates

54

53

1) Observe the general instructions on page 38 for the maximum tightening torques

2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

1 5/16-12UN-2B;

0.79 (20) deep

6500 (450)

Ο

O 1x each

ISO 119263)

3) The spot face can be deeper than specified in the appropriate standard.

Service line

4) O = Must be connected (plugged on delivery)

Note

Port plates 18 and 19: see pages 30 and 33

52 - SAE flange ports at side, opposite

Dimensions size 45 – SAE design

Before finalizing your design, request a binding installation drawing. Dimensions in inch and (millimeters).

Shaft ends

Ports

Designation	Port for	Standard	Size ⁴⁾	p _{max} [psi (bar)] ⁵⁾	State ⁸⁾
А, В	Service line (see port plates)				
T ₁	Drain line	ISO 11926 ⁶⁾	3/4-16UNF-2B; 0.59 (15) deep	45 (3)	O ⁷⁾
T ₂	Drain line	ISO 11926 ⁶⁾	3/4-16UNF-2B; 0.59 (15) deep	45 (3)	X ⁷⁾

1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Thread according to ASME B1.1

3) Center bore according to DIN 332 (thread according to DIN 13)

4) Observe the general instructions on page 38 for the maximum tightening torques.

- 5) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) Depending on installation position, T1 or T2 must be connected (see also installation instructions on page 36)
- O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in inch and (millimeters).

Dimensions size 45 – SAE design

Location of the service line ports on the port plates

52 - SAE flange ports at side, opposite

1) Observe the general instructions on page 38 for the maximum tightening torques

2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

3) O = Must be connected (plugged on delivery)

Note

Port plates 18 and 19: see pages 30 and 33

Dimensions sizes 56, 63 - SAE design

Before finalizing your design, request a binding installation drawing. Dimensions in inch and (millimeters).

Shaft ends

Ports

Designation	Port for	Standard	Size ⁴⁾	p _{max} [psi (bar)] ⁵⁾	State ⁸⁾
A, B	Service line (see port plates)				
T ₁	Drain line	ISO 11926 ⁶⁾	3/4-16UNF-2B; 0.59 (15) deep	45 (3)	O ⁷⁾
T ₂	Drain line	ISO 11926 ⁶⁾	3/4-16UNF-2B; 0.59 (15) deep	45 (3)	X ⁷⁾

1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Thread according to ASME B1.1

3) Center bore according to DIN 332 (thread according to DIN 13)

- 4) Observe the general instructions on page 38 for the maximum tightening torques.
- 5) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 36)
- O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Dimensions sizes 56, 63 - SAE design

Before finalizing your design, request a binding installation drawing. Dimensions in inch and (millimeters).

Location of the service line ports on the port plates

52 - SAE flange ports at side, opposite

1) Observe the general instructions on page 38 for the maximum tightening torques

2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

3) O = Must be connected (plugged on delivery)

Note

Port plates 18 and 19: see pages 30 and 33

Dimensions sizes 80, 90 - SAE design

Before finalizing your design, request a binding installation drawing. Dimensions in inch and (millimeters).

Shaft ends

Ports

Designation	Port for	Standard	Size ⁴⁾	p _{max} [psi (bar)] ⁵⁾	State ⁸⁾
А, В	Service line (see port plates)				
T ₁	Drain line	ISO 11926 ⁶⁾	7/8-14UNF-2B; 0.67 (17) deep	45 (3)	O ⁷⁾
T ₂	Drain line	ISO 11926 ⁶⁾	7/8-14UNF-2B; 0.67 (17) deep	45 (3)	X ⁷⁾

1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Thread according to ASME B1.1

3) Center bore according to DIN 332 (thread according to DIN 13)

4) Observe the general instructions on page 38 for the maximum tightening torques.

5) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

6) The spot face can be deeper than specified in the appropriate standard.

7) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 36)

8) O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Dimensions sizes 80, 90 - SAE design

Before finalizing your design, request a binding installation drawing. Dimensions in inch and (millimeters).

Location of the service line ports on the port plates

60 - SAE flange ports at bottom

Plate	Designation	Port for	Standard	Size ¹⁾	p _{max} [psi (bar)] ²⁾	State ³⁾
51, 52, 60	А, В	Service line Fastening thread A/B	SAE J518 ASME B1.1	1 in 7/16-14UNC-2B; 0.75 (19) deep	6500 (450)	0

1) Observe the general instructions on page 38 for the maximum tightening torques

2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

3) O = Must be connected (plugged on delivery)

Note

Port plates 18 and 19: see pages 30 and 33

52 - SAE flange ports at side, opposite

Dimensions sizes 107, 125 - SAE design

Before finalizing your design, request a binding installation drawing. Dimensions in inch and (millimeters).

Shaft ends

Ports

Designation	Port for	Standard	Size ⁴⁾	p _{max} [psi (bar)] ⁵⁾	State ⁸⁾
А, В	Service line (see port plates)				
T ₁	Drain line	ISO 11926 ⁶⁾	7/8-14UNF-2B; 0.67 (17) deep	45 (3)	O ⁷⁾
T ₂	Drain line	ISO 11926 ⁶⁾	7/8-14UNF-2B; 0.67 (17) deep	45 (3)	X ⁷⁾

1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Thread according to ASME B1.1

3) Center bore according to DIN 332 (thread according to DIN 13)

4) Observe the general instructions on page 38 for the maximum tightening torques.

5) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

6) The spot face can be deeper than specified in the appropriate standard.

7) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 36)

O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Dimensions sizes 107, 125 - SAE design

Before finalizing your design, request a binding installation drawing. Dimensions in inch and (millimeters).

p_{max} [psi (bar)]²⁾

6500 (450)

State³⁾

0

Location of the service line ports on the port plates

51 - SAE flange ports at rear

51, 52, 60 Fastening thread A/B ASME B1.1 1/2-13UNC-2B; 0.75 (19) deep

Y

Port for

Service line

1) Observe the general instructions on page 38 for the maximum tightening torques

<u>1.25</u> (31.8)

2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

Standard

SAE J518

Size¹⁾

1 1/4 in

3) O = Must be connected (plugged on delivery)

Installation version 2 is turned arround 180°.

Designation

10.16 (258)

11.54 (293)

Installation version 1 is shown.

A, B

Note

Plate

Port plates 17, 18 and 19: see pages 30 and 33

52 - SAE flange ports at side, opposite

Dimensions sizes 160, 180 - SAE design

Before finalizing your design, request a binding installation drawing. Dimensions in inch and (millimeters).

Shaft ends

Ports

Designation	Port for	Standard	Size ⁴⁾	p _{max} [psi (bar)] ⁵⁾	State ⁸⁾
A, B	Service line (see port plates)				
T ₁	Drain line	ISO 11926 ⁶⁾	7/8-14UNF-2B; 0.67 (17) deep	45 (3)	O ⁷⁾
T ₂	Drain line	ISO 11926 ⁶⁾	7/8-14UNF-2B; 0.67 (17) deep	45 (3)	X ⁷⁾

1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Thread according to ASME B1.1

3) Center bore according to DIN 332 (thread according to DIN 13)

- 4) Observe the general instructions on page 38 for the maximum tightening torques.
- 5) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 6) The spot face can be deeper than specified in the appropriate standard.
- 7) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 36)
- O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

Dimensions sizes 160, 180 - SAE design

Before finalizing your design, request a binding installation drawing. Dimensions in inch and (millimeters).

Location of the service line ports on the port plates

52 - SAE flange ports at side, opposite

1) Observe the general instructions on page 38 for the maximum tightening torques

2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

3) O = Must be connected (plugged on delivery)

Note

Port plates 18 and 19: see pages 30 and 33

Dimensions size 250 – SAE design

Before finalizing your design, request a binding installation drawing. Dimensions in inch and (millimeters).

Drive shafts

Ports

Designation	Port for	Standard	Size ³⁾	p _{max} [psi (bar)] ⁴⁾	State ⁷⁾
А, В	Service line (see port plates)				
T ₁	Drain line	ISO 11926 ⁵⁾	7/8-14UNF-2B; 0.67 (17) deep	45 (3)	O ⁶⁾
T ₂	Drain line	ISO 11926 ⁵⁾	7/8-14UNF-2B; 0.67 (17) deep	45 (3)	X ⁶⁾
U	Port for bearing flushing	ISO 11926 ⁵⁾	9/16-18UNF-2B; 0.51 (13) deep	45 (3)	Х

1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Thread according to ASME B1.1

3) Observe the general instructions on page 38 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) The spot face can be deeper than specified in the appropriate standard.

6) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 36)

7) O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Dimensions size 250

Before finalizing your design, request a binding installation drawing. Dimensions in inch and (millimeters).

Location of the service line ports on the port plates

52 - SAE flange ports at side, opposite

1) Observe the general instructions on page 38 for the maximum tightening torques

2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

3) O = Must be connected (plugged on delivery)

Before finalizing your design, request a binding instal-

lation drawing. Dimensions in inch and (millimeters).

Flushing and boost pressure valve

The flushing and boost pressure valve is used to remove heat from the hydraulic circuit.

In an open circuit, it is used only for flushing the housing.

In a closed circuit, it ensures a minimum boost pressure level in addition to the case flushing.

Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the case drain fluid. The hydraulic fluid, removed out of the closed circuit must be replaced by cooled hydraulic fluid from the boost pump.

With port plate 527, the valve is mounted directly on the fixed motor (sizes 23 to 250).

Cracking pressure of pressure retaining valve

(observe when setting the primary valve)

Sizes 23 to 250, fixed setting_____ 230 psi (16 bar)

Switching pressure of flushing piston Δp

Flushing flow q_v

Orifice (throttles with integrated valve) can be used to set the flushing flows as required.

Following parameters are based on:

 $\Delta p_{ND} = p_{ND} - p_G = 365 \text{ psi} (25 \text{ bar}) \text{ and}$

 $v = 46 \text{ SUS} (10 \text{ mm}^2/\text{s})$

 $(p_{ND} = low pressure, p_G = case pressure)$

Schematic

Flushing and boost pressure valve, mounted (code 7)

Sizes 23 to 180

Orifices can be supplied for the following flushing flows:

Material number of orifice	q _v [gpm (L/min)]
R909651766	0.93 (3.5)
R909419695	1.32 (5)
R902030345	1.72 (6.5)
R909419696	2.11 (8)
R909419697	2.64 (10)
R902107424	3.43 (13)
R909444361	3.7 (14)

Size 250

Standard flushing flow 2.64 gpm (10 L/min).

For other flushing flows, please state the required flushing flow when ordering. The flushing flow without orifice is approx. 3.2 to 3.7 gpm (12 to 14 L) at low pressure $\Delta p_{ND} = 365$ psi (25 bar). For size 250, please contact us.

Dimensions

Port plate 527 - SAE flange ports at side

Size		A1	A2	
23 to 32	in	8.90	5.47	
	mm	(226)	(139)	
45	in	9.72	5.94	
	mm	(247)	(151)	
56, 63	in	10.67	6.26	
	mm	(271)	(159)	
80, 90	in	11.69	6.83	
	mm	(297)	(173.5)	
107, 125	in	12.83	7.56	
	mm	(326)	(192)	
160, 180	in	13.66	7.91	
	mm	(347)	(201)	
250	in	15.20	6.77	
	mm	(386)	(172)	

Before finalizing your design, request a binding instal-

lation drawing. Dimensions in inch and (millimeters).

Pressure-relief valves

The MHDB pressure-relief valves (see RE 64642) protect the hydraulic motor from overload. As soon as the set cracking pressure is reached, the hydraulic fluid flows from the high-pressure side to the low-pressure side.

The pressure-relief valves are only available in combination with port plates 181, 191 or 192 (counterbalance valve for mounting to port plate 181: see next page).

Cracking pressure setting range

725 to 6100 psi (50 to 420 bar)

With the version "with pressure boost facility" (192), a higher pressure setting can be realized by applying an external pilot pressure of 365 to 435 psi (25 to 30 bar) to port P_{St} .

When ordering, please state in plain text:

- Cracking pressure of pressure-relief valve
- Cracking pressure with pilot pressure applied to P_{St} (only with version 192)

Version without pressure boost facility "191"

Ports

Designation	Port for	Standard	Size	p _{max} [psi (bar)] ¹⁾	State ²⁾
A, B	Service line	SAE J518	See page 30	6500 (450)	0
S ₁	Supply (only with port plate 191/192)	DIN 3852	_	75 (5)	0
M _A , M _B	Measuring operating pressure	DIN 3852	_	6500 (450)	Х
P _{St}	Pilot pressure (only with port plate 192)	DIN ISO 228	_	435 (30)	0

1) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

²⁾ O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Pressure-relief valves

Dimensions

Size			D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13 ¹⁾²⁾
28, 32	MHDB.16	in	8.90	7.99	0.98	2.68	7.52	4.02	3.43	1.42	2.60	2.00	0.94	0.75	M10;
		mm	226	203	25	68	191	102	87	36	66	50.8	23.8	19	0.67 (17) deep
45	MHDB.16	in	9.69	8.74	0.87	2.56	8.31	4.45	3.86	1.42	2.60	2.00	0.94	0.75	M10;
		mm	246	222	22	65	211	113	98	36	66	50.8	23.8	19	0.67 (17) deep
56, 63	MHDB. 22	in	10.79	9.69	0.75	2.40	9.13	4.88	4.13	1.65	2.95	2.00	0.94	0.75	M10;
		mm	274	246	19	61	232	124	105	42	75	50.8	23.8	19	0.51 (13) deep
80, 90	MHDB.22	in	11.81	10.71	0.69	2.32	10.16	5.28	4.49	1.65	2.95	2.25	1.09	0.98	M12;
		mm	300	272	17.5	59	258	134	114	42	75	57.2	27.8	25	0.71 (18) deep
107, 125	MHDB.32	in	12.99	11.73	0.39	2.05	11.10	5.89	5.12	2.09	3.31	2.63	1.25	1.26	M14;
		mm	330	298	10	52	282	149.5	130	53	84	66.7	31.8	32	0.75 (19) deep
160, 180	MHDB.32	in	14.33	13.11	0.20	1.85	12.48	6.69	5.87	2.09	3.31	2.63	1.25	1.26	M14;
		mm	364	333	5	47	317	170	149	53	84	66.7	31.8	32	0.75 (19) deep
Size		A, E	}		S 1 ²⁾				Μ ₄	, M _B ²⁾				P _{St} ²⁾	
28, 32		3/4	in		M22 x ⁻	1.5; 0.5	5 (14) d	leep	M2	20 x 1.5	; 0.55 ((14) dee	ep ²⁾	G 1/4	Ļ

28, 32	3/4 IN	M22 X 1.5; 0.55 (14) deep	M20 x 1.5; 0.55 (14) deep ²	G 1/4
45	3/4 in	M22 x 1.5; 0.55 (14) deep	M20 x 1.5; 0.55 (14) deep ²⁾	G 1/4
56, 63	3/4 in	M26 x 1.5; 0.63 (16) deep	M26 x 1.5; 0.63 (16) deep ²⁾	G 1/4
80, 90	1 in	M26 x 1.5; 0.63 (16) deep	M26 x 1.5; 0.63 (16) deep ²⁾	G 1/4
107, 125	1 1/4 in	M26 x 1.5; 0.63 (16) deep	M26 x 1.5; 0.63 (16) deep ²⁾	G 1/4
160, 180	1 1/4 in	M26 x 1.5; 0.63 (16) deep	M30 x 1.5; 0.63 (16) deep	G 1/4

1) Thread according to DIN 13

2) Observe the general instructions on page 38 for the maximum tightening torques.

Assembly instructions for port plate with pressure boost facility "192":

The lock nut must be counterheld when installing the hydraulic line at the pst port!

Before finalizing your design, request a binding installation drawing. Dimensions in inch and (millimeters).

Counterbalance valve BVD and BVE

Function

Travel drive/winch counterbalance valves are designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if the motor speed is greater than it should be for the given input flow while braking, travelling downhill, or lowering a load.

If the inlet pressure drops, the counterbalance spool throttles the return flow and brakes the motor until the inlet pressure returns to approx. 290 psi (20 bar).

Note

- BVD available for sizes 28 to 180 and BVE available for sizes 107 to 180.
- The counterbalance valve must be ordered additionally. We recommend ordering the counterbalance valve and the motor as a set. Ordering example: AA2FM90/61W-VUDN188 + BVD20F27S/41B-V03K16D0400S12
- For safety reasons, controls with beginning of control at V_{g min} (e. g. HA) are not permissible for winch drives!
- The counterbalance valve does not replace the mechanical service brake and park brake.
- Observe the detailed notes on the BVD counterbalance valve in RE 95522 and BVE counterbalance valve in RE 95525!
- For the design of the brake release valve, we must know for the mechanical park brake:
 - the pressure at the start of opening
 - the volume of the brake piston between minimum stroke (brake closed) and maximum stroke (brake released with 305 psi (21 bar)
 - the required closing time for a warm device (oil viscosity approx. 69.6 SUS (15 mm²/s))

Travel drive counterbalance valve BVD...F

Application option

- Travel drive on wheeled excavators

Example schematic for travel drive on wheeled excavators AA2FM090/61W-VAB188 + BVD20F27S/41B-V03K16D0400S12

Counterbalance valve BVD and BVE

Winch counterbalance valve BVD...W and BVE

Application options

- Winch drive in cranes (BVD and BVE)
- Track drive in excavator crawlers (BVD)

Example schematic for winch drive in cranes AA2FM090/61W-VAB188 + BVE25W385/51ND-V100K00D4599T30S00-0

Permissible input flow or pressure in operation with DBV and BVD/BVE

	Without val	ve	Restricted values in operation with DBV ar					Id BVD/BVE				
Motor			DBV				BVD/BVE					
Size	p _{nom} /p _{max} [psi (bar)]	q _{V max} [GPM(L/min)]	Size	p _{nom} /p _{max} [psi (bar)]	q _v [GPM(L/min)]	Code	Size	p _{nom} /p _{max} [psi (bar)]	q _v [GPM(L/min)]	Code		
28	5800/6500	46.49 (176)	16	5100/6100	26.41 (100)	181	20	5100/6100	26.41 (100)	188		
32	(400/450)	53.09 (201)		(350/420)		191, 192	(BVD)	(350/420)				
45		67.36 (255)										
56		73.96 (280)	22		63.40 (240)				58.12 (220)			
63		83.21 (315)										
80		95.10 (360)]									
90		106.98 (405)										
107		112.80 (427)				171				178		
125		132.08 (500)				191, 192						
107		112.80 (427)	32		105.66 (400)	181	25		84.54 (320)	188		
125		132.08 (500)				191, 192	(BVD/					
160		152.42 (577)					BVE)					
180		171.18 (648)]									
DBV			pre	ssure-relief v	alve							

- BVD _____counterbalance valve, double-acting
- BVE _____ counterbalance valve, one-sided

Before finalizing your design, request a binding installation drawing. Dimensions in inch and (millimeters).

Counterbalance valve BVD and BVE

Before finalizing your design, request a binding installation drawing. Dimensions in inch and (millimeters).

Dimensions

A2FM	Counterbalance	e valve									
Size	Туре	Ports		Dimensio	ons						
		А, В		B1	B2	B3	B4 (S)	B4 (L)	B5	B6	B7
28, 32	BVD 20 16	3/4 in	in	8.90	6.89	6.73	5.59	5.79	5.47	3.86	2.60
			mm	226	175	191	142	147	139	98	66
45	BVD 20 16	3/4 in	in	9.69	7.72	8.31	5.59	5.79	5.47	3.86	2.60
			mm	246	196	211	142	147	139	98	66
56, 63	BVD 20 17	3/4 in	in	10.79	7.76	9.13	5.59	5.79	5.47	3.86	2.95
			mm	274	197	232	142	147	139	98	75
80, 90	30, 90 BVD 20 27 1 in	1 in	in	11.81	8.15	10.16	5.59	5.79	5.47	3.86	2.95
			mm	300	207	258	142	147	139	98	75
107, 125	BVD 20 28	1 in	in	12.99	9.37	11.14	5.59	5.79	5.47	3.86	3.31
			mm	330	238	283	142	147	139	98	84
107, 125	BVD 25 38	1 ¹ / ₄ in	in	12.99	9.41	11.14	6.22	6.41	6.89	4.74	3.31
			mm	330	239	283	158	163	175	120.5	84
160, 180	BVD 25 38	1 ¹ / ₄ in	in	14.33	10.24	12.48	6.22	6.41	6.89	4.74	3.31
			mm	364	260	317	158	163	175	120.5	84
107, 125	BVE 25 38	1 ¹ / ₄ in	in	12.99	9.45	11.14	6.57	6.77	8.43	5.39	3.31
			mm	330	240	283	167	172	214	137	84
160, 180	BVE 25 38	1 ¹ / ₄ in	in	14.33	10.24	12.48	6.57	6.77	8.43	5.39	3.31
			mm	364	260	317	167	172	214	137	84
250	On request										

Ports

Counterbalance valve BVD and BVE

Before finalizing your design, request a binding installation drawing. Dimensions in inch and (millimeters).

Designation	Port for	Version	Standard	Size ¹⁾	Maximum pressure [psi (bar)] ²⁾	State ⁴⁾
А, В	Service line		SAE J518	see table on page 33	6100 (420)	0
S	Infeed	BVD20	DIN 3852 ³⁾	M22 x 1.5; 0.55 (14) deep	435 (30)	Х
		BVD25, BVE25	DIN 3852 ³⁾	M27 x 2; 0.63 (16) deep	435 (30)	Х
Br	Brake release, reduced high pressure	L	DIN 3852 ³⁾	M12 x 1.5; 0.29 (12.5) deep	435 (30)	0
G _{ext}	Brake release, high pressure	S	DIN 3852 ³⁾	M12 x 1.5; 0.29 (12.5) deep	6100 (420)	X
$M_{A,}M_{B}$	Measuring pressure A and B		ISO 6149 ³⁾	M12 x 1.5; 0.47 (12) deep	6100 (420)	X

1) Observe the general instructions on page 38 for the maximum tightening torques.

2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

3) The spot face can be deeper than specified in the appropriate standard.

4) O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Mounting the counterbalance valve

When delivered, the counterbalance valve is mounted to the motor with two tacking screws (transport protection). The tacking screws may not be removed while mounting the service lines. If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be mounted to the motor port plate using the provided tacking screws. The counterbalance valve is finally mounted to the motor by screwing on the SAE flange with the following screws:

6 screws (1, 2, 3, 4, 5, 8)	length B1+B2+B3
2 screws (6, 7)	length B3+B4

Tighten the screws in two steps in the specified sequence from 1 to 8 (see following scheme).

In the first step, the screws must be tightened with half the tightening torque, and in the second step with the maximum tightening torque (see following table).

Thread	Strength class	Tightening torque [lb-ft (Nm)]
M6 x 1 (tacking screw)	10.9	11.4 (15.5)
M10	10.9	55 (75)
M12	10.9	95 (130)
M14	10.9	150 (205)

Size	28, 32, 45	56, 63	80, 90	107, 125, 160, 180	107, 125
Port plate	18				17
B1 ¹⁾	M10 x 1.5; 0.67 (17) deep	M10 x 1.5; 0.67 (17) deep	M12 x 1.75; 0.71 (18) deep	M14 x 2; 0.75 (19) deep	M12 x 1.75; 0.67 (17) deep
B2	3.07 (78) ²⁾	2.67 (68)	2.67 (68)	3.35 (85)	2.67 (68)
B3	customer-specific				
B4	M10 x 1.5; 0.59 (15) deep	M10 x 1.5; 0.59 (15) deep	M12 x 1.75; 0.63 (16) deep	M14 x 2; 0.75 (19) deep	M12 x 1.75; 0.67 (17) deep

1) Minimum required thread reach 1 x DIA-thread

2) Including sandwich plate

Speed sensors

The versions AA2FM...U and AA2FM...F ("prepared for speed sensor", i.e. without sensor) is equipped with a toothed ring on the rotary group.

On deliveries "prepared for speed sensor", the port is plugged with a pressure-resistant cover.

With the DSM/DSA or HDD speed sensor mounted a signal proportional to motor speed can be generated.

The sensors measures the speed and direction of rotation.

Ordering code, technical data, dimensions and details on the connector, plus safety information about the sensor can be found in the relevant data sheet.

DSM	 RE 95132

DSA		RE 95133
-----	--	----------

HDD _____ RE 35135

The sensor is mounted at the specially provided port D as follows:

DSM/DSA ______ with one mounting bolt

HDD ______ with two mounting bolts

We recommend ordering the AA2FM fixed motor complete with sensor mounted.

Version "V"

Sizes 23 to 180 with DSM/DSA sensor

Before finalizing your design, request a binding installation drawing. Dimensions in inch and (millimeters).

Version "F"

Sizes 23 to 180 with HDD sensor

View X

Size					23, 28, 32	45	56, 63	80, 90	107, 125	160, 180
Number of teeth				38	45	47	53	59	67	
HDD	A	Insertion depth	(tolerance \pm 0.004)	in	0.63	0.63	0.63	0.63	0.63	0.63
			(tolerance \pm 0.1)	mm	16	16	16	16	16	16
	В	Contact surface		in	2.19	2.46	2.66	2.85	3.05	3.35
				mm	55.5	62.5	67.5	72.5	77.5	85
	С	C		in	3.69	3.97	4.17	4.36	4.56	4.85
				mm	93.8	100.8	105.8	110.8	115.8	123.3
	D	D		in	2.15	2.14	2.42	2.85	3.02	3.42
				mm	73.7	79.3	87.5	101.5	111.8	118.8
DSM/ DSA	A Ins	Insertion depth	(tolerance \pm 0.004)	in	0.72	0.72	0.72	0.72	0.72	0.72
			(tolerance \pm 0.1)	mm	18.4	18.4	18.4	18.4	18.4	18.4
	В	3 Contact surface		in	2.28	2.56	2.75	2.95	3.15	3.44
				mm	57.9	64.9	69.9	74.9	79.9	87.4
	C ir		in	2.93	3.21	3.41	3.60	3.80	4.09	
				mm	74.5	81.5	86.5	91.5	96.5	104
	D			in	2.82	3.08	3.37	3.40	4.28	4.68
				mm	71.7	78.3	85.5	101.5	108.8	118.8

Installation instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.

Particularly in the installation position "drive shaft upwards" filling and air bleeding must be carried out completely as there is, for example, a danger of dry running.

The case drain fluid in the motor housing must be directed to the reservoir via the highest available drain port (T_1, T_2) .

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Installation position

See the following examples 1 to 8. Further installation positions are possible upon request.

Recommended installation positions: 1 and 2.

Note

With sizes 10 to 180 with installation position "shaft upward", an air-bleed port R is required (state in plain text when ordering - special version). With size 250, port U is provided as standard in the area near the bearings for air bleeding.

Installation position	Air bleed	Filling
1	-	T ₁
2	-	T ₂
3	-	T ₁
4	R (U)	T ₂
5	L ₁	T ₁ (L ₁)
6	L ₁	T ₂ (L ₁)
7	L ₁	T ₁ (L ₁)
8	R (U)	T ₂ (L ₁)

L1 Filling / air bleed

R Air bleed port (special version)

U Bearing flushing / air bleed port

- T1, T2 Drain port
- h_{t min} Minimum required immersion depth (7.87 in (200 mm))
- h_{min} Minimum required spacing to reservoir bottom (3.94 in (100 mm))

Below-reservoir installation (standard)

Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

Recommendation for installation position 8 (drive shaft upward): A check valve in the drain line (cracking pressure 7.5 psi (0.5 bar)) can prevent draining of the motor housing.

Before finalizing your design, request a binding installation drawing. Dimensions in inch and (millimeters).

Additional information of general instructions (page 38)

Ports		Maximum permissible	Required	WAF		
Standard	Size of thread	tightening torque of the female threads M _{G max}	tightening torque of the threaded plugs M _V	hexagon socket of the threaded plugs		
ISO 11926	9/16-18 UNF-2B	59 lb-ft	26 lb-ft	1/4 in		
		80 Nm	35 Nm			
	3/4-16 UNF-2B	118 lb-ft 52 lb-ft		5/16 in		
		160 Nm	70 Nm			
	7/8-14 UNF-2B	177 lb-ft	81 lb-ft	3/8 in		
		240 Nm	110 Nm			
	1 1/16-12 UN-2B	266 lb-ft	125 lb-ft	9/16 in		
		360 Nm	170 Nm			
	1 5/16-12 UN-2B	398 lb-ft	199 lb-ft	5/8 in		
		540 Nm	270 Nm			
ISO 6149	M12 x 1.5	36 lb-ft	18 lb-ft	0.24 in		
		50 Nm	25 Nm	6 mm		
DIN 3852	M12 x 1.5	37 lb-ft	18 lb-ft ¹⁾²⁾	0.24 in		
		50 Nm	25 Nm ¹⁾²⁾	6 mm		
	M20 x 1.5	125 lb-ft	59 lb-ft ¹⁾	0.39 in		
		170 Nm	80 Nm ¹⁾	10 mm		
	M22 x 1.5	155 lb-ft	59 lb-ft ¹⁾	0.39 in		
		210 Nm	80 Nm ¹⁾	10 mm		
	M26 x 1.5	170 lb-ft	88 lb-ft ¹⁾	0.47 in		
		230 Nm 120 Nm ¹⁾		12 mm		
	M27 x 2	243 lb-ft	100 lb-ft ¹⁾	0.47 in		
		330 Nm	135 Nm ¹⁾	12 mm		
	M30 x 2	310 lb-ft	158 lb-ft ¹⁾	0.67 in		
		420 Nm	215 Nm ¹⁾	17 mm		
DIN ISO 228	G 1/4	29 lb-ft	-	-		
		40 Nm	-	-		

1) The tightening torques apply for screws in the "dry" state as received on delivery and in the "lightly oiled" state for installation. 2) In the "lightly oiled" state, the M_V is reduced to 12.5 lb-ft (17 Nm) for M12 x 1.5.

General instructions

- The motor AA2FM is designed to be used in open and closed circuits.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified personnel.
- Before using the axial piston unit, please read the corresponding ng instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- During and shortly after operation, there is a risk of burns on the axial piston unit. Take appropriate safety measures (e. g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Service line ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports can only be used to accommodate hydraulic lines.
- The data and notes contained herein must be adhered to.

- Not all versions of the product are approved for use in a safety function pursuant to ISO 13849. If you require characteristic values relating to reliability (e. g. MTTF_d) for functional safety, please consult the responsible contact person at Bosch Rexroth.
- The following tightening torques apply:
 - Fittings:

Observe the manufacturer's instructions regarding tightening torques of the fittings used.

- Mounting bolts:

For mounting bolts with metric ISO thread according to DIN 13 or with thread according to ASME B1.1, we recommend checking the tightening torque in individual cases in accordance with VDI 2230.

- Female threads in the axial piston unit:

The maximum permissible tightening torques $M_{G\mbox{ max}}$ are maximum values for the female threads and must not be exceeded. For values, see the table on page 37

Threaded plugs:

For the metallic threaded plugs supplied with the axial piston unit, the required tightening torques of threaded plugs M_V apply. For values, see the table on page 37.

Bosch Rexroth Corporation Hydraulics Axial & Radial Piston Units 8 Southchase Court Fountain Inn, SC 29644-9018, USA Telephone (864) 967-2777 Facsimile (864) 967-8900 www.boschrexroth-us.com

© Bosch Rexroth Corporation

All rights reserved. Neither this document, nor any part of it, may be reproduced, duplicated, circulated or disseminated, whether by copy, electronic format or any other means, without the prior consent and authorization of Bosch Rexroth Corp. The data and illustrations in this brochure/data sheet are intended only to describe or depict the products. No representation or warranty, either express or implied, relating to merchantability or fitness for intended use, is given or intended by virtue of the information contained in this brochure/data sheet. The information contained in this brochure/data sheet is obligation to insure the proper use of the products for a specific use or application. All

products contained in this brochure/data sheet are subject to normal wear and tear from usage.

Subject to change.

Bosch Rexroth Corporation Hydraulics Axial & Radial Piston Units 8 Southchase Court Fountain Inn, SC 29644-9018, USA Telephone (864) 967-2777 Facsimile (864) 967-8900 www.boschrexroth-us.com

© Bosch Rexroth Corporation

All rights reserved. Neither this document, nor any part of it, may be reproduced, duplicated, circulated or disseminated, whether by copy, electronic format or any other means, without the prior consent and authorization of Bosch Rexroth Corp. The data and illustrations in this brochure/data sheet are intended only to describe or depict the products. No representation or warranty, either express or im-

plied, relating to merchantability or fitness for intended use, is given or intended by virtue of the information contained in this brochure/data sheet. The information contained in this brochure/data sheet in no way relieves the user of its obligation to insure the proper use of the products for a specific use or application. All products contained in this brochure/data sheet are subject to normal wear and tear from usage.

Subject to change.