Vane pumps type PFE-31, PFE-41, PFE-51

fixed displacement - cartridge design

PFE-*1 are fixed displacement-twelvevane pumps, (2) (3) cartridge design with integral hydraulic balancing (4) for high pressure operation, long service life and low noise level.

They are available in three different sizes with max displacements up to 44, 85 and $150 \mathrm{~cm}^{3} / \mathrm{rev}$ and single, multiple or with through-shaft configurations.

Mounting flange according to SAE J744 standard.

Inlet and outlet ports can be oriented in four different positions to match any installation requirement.

Simplified maintenance as the pumping cartridge can be easily replaced.

Max pressure 210 bar.
1 MODEL CODE
PFE

| PFE |
| :--- | :--- |
| Fixed displacement vane pump |

-31	036	$/ 31028$	$/$	1	D

T
Series number
Port orientation, see section 5:
$\mathbf{T}=$ standard
$\mathbf{U}, \mathbf{V}, \mathbf{W}=$ on request

Direction of rotation (viewed from the shaft end): $\mathbf{D}=$ clockwise (supplied standard if not otherwise specified) $\mathbf{S}=$ counterclockwise Note: PFE are not reversible

Size, see section [2]:
31, 41, 51
Drive shaft, see section 6 and 7:
cylindrical, keyed for single and multiple pump (only first position) 1 = standard
$\mathbf{2}$ = long version (only for PFE-41 and PFE-51)
3 = for high torque applications
Eisplacement [$\left.\mathrm{cm}^{3} / \mathrm{rev}\right]$, see section ${ }^{2}$
for PFE 41: 029, 037, 045, 056, 070, 085
for PFE 51: 090, 110, 129, 150
$\mathbf{5}=$ for single and multiple pumps (any position)
$\mathbf{6}=$ for single and multiple pumps (only first position) 7 only for PFE-31 7 = for second and third position in multiple pumps and PFE-41
Only for multiple pumps PFEX*: type of second (and third) pump

OPERATING CHARACTERISTICS at 1450 rpm (based on mineral oil ISO VG $\mathbf{4 6}$ at $50^{\circ} \mathrm{C}$)

Model	Displacement $\mathrm{cm}^{3} / \mathrm{rev}$		Speed range rpm (2)	$\mathrm{I}_{\mathrm{min}}^{7 \mathrm{bar}}$	${ }^{(3)} \text { kW }$	$70 \text { bar }$ $1 / \mathrm{min}$	$\begin{aligned} & (3) \\ & k W \end{aligned}$	$\begin{array}{cc} 140 \text { bar } & (3) \\ \mathrm{I} / \mathrm{min} & \mathrm{~kW} \end{array}$	$\begin{aligned} & 210 \text { bar } \\ & \mathrm{I} / \mathrm{min} \end{aligned}$	$\begin{aligned} & (3) \\ & \text { kW } \end{aligned}$
PFE-31010	10,5	160	800-2400	15	0,2	13,5	2	125	-	-
PFE-31016	16,5	210 bar	800-2800	23	0,5	21	3	19 5	16	8,3
PFE-31022	21,6			30	0,6	28	4	$26 \quad 7$	23	10,8
PFE-31028	28,1			40	0,8	38	5,5	$36 \quad 10$	33	14
PFE-31036	35,6			51	1	49	7	46 12,5	43	17,8
PFE-31044	43,7		800-2500	63	1,3	61	8	58 15,5	55	22
PFE-41029	29,3			41	0,8	39	5,5	$37 \quad 10$	34	14,7
PFE-41037	36,6			52	1	50	7	48 12,5	45	18,3
PFE-41045	45,0			64	1,3	62	8,5	$60 \quad 16$	57	22,6
PFE-41056	55,8			80	1,6	78	11	$75 \quad 21$	72	28
PFE-41070	69,9			101	2	98	13,5	$95 \quad 26$	91	35
PFE-41085	85,3		800-2000	124	2,4	121	16	118 32	114	43
PFE-51090	90,0		800-2200	128	2,7	124	17	11933	114	45
PFE-51110	109,6			157	3,2	152	21	147 40	141	55
PFE-51129	129,2			186	3,7	180	25	174	168	65
PFE-51150	150,2		800-1800	215	4,2	211	29	20455	197	75

(1) Max pressure is

160 bar for /PE version and water glycol fluid
(2) Max speed is 1800 rpm for /PE versions; 1500 rpm for water glycol fluid
(3) Flow rate and power consumption are proportional to the rotation speed, see section 4

Installation position	Any position
Loads on the shaft	Axial and radial loads are not allowed on the shaft. The coupling should be sized to absorb the power peak.
Ambient temperature	from $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Fluid	Hydraulic oil as per DIN 51524...535; for other fluids see section \square
Recommended viscosity max at cold start max at full power during operation min at full power	$800 \mathrm{~mm}^{2} / \mathrm{s}$ $100 \mathrm{~mm}^{2} / \mathrm{s}$ $24 \mathrm{~mm}^{2} / \mathrm{s}$ $10 \mathrm{~mm}^{2} / \mathrm{s}$
Fluid contamination class	ISO 4401 class 21/19/16 NAS 1638 class 10 (filters at $25 \mu \mathrm{~m}$ value with $\beta 2575$ recommended)
Fluid temperature	$-20^{\circ} \mathrm{C}+60^{\circ} \mathrm{C} \quad-20^{\circ} \mathrm{C}+50^{\circ} \mathrm{C}$ (water glycol) $-20^{\circ} \mathrm{C}+80^{\circ} \mathrm{C}$ (/PE seals)
Recommended pressure on inlet port	from -0,15 to 1,5 bar for speed up to 1800 rpm ; from 0 to $+1,5$ bar for speed over 1800 rpm

4 DIAGRAMS (based on mineral oil ISO VG 46 at $50^{\circ} \mathrm{C}$)

1 = Torque versus pressure diagram
2 = Ambient noise levels measured in compliance with ISO 4412-1 oleohydraulics -Test procedure to define the ambient noise level - Pumps
Shaft speed: 1450 rpm .

PFE-31:

3 = Flow versus speed diagram with pressure variation from 7 bar to 210 bar.

4 = Power consumption versus speed diagram at 140 bar. Power consumption is proportional to operating pressure.

PFE-41:

5 = Flow versus speed diagram with pressure variation from 7 bar to 210 bar.

6 = Power consumption versus speed diagram at 140 bar. Power consumption is proportional to operating pressure.

PFE-51:

7 = Flow versus speed diagram with pressure variation from 7 bar to 210 bar.

8 = Power consumption versus speed diagram at 140 bar. Power consumption is proportional to operating pressure.

Rotation speed [rpm]

Single pumps can be supplied with oil ports oriented in different configuration in relation to the drive shaft, as follows (wiewed from the shaft end);
$\mathbf{T}=$ inlet and outlet ports on the same axis (standard)
$\mathbf{U}=$ outlet orientated 180° with respect to the inlet
$\mathbf{V}=$ outlet oriented 90° with respect to the inlet
$\mathbf{W}=$ outlet oriented 270° with respect to the inlet
In multiple pumps inlet ports and outlet ports are in line.
Ports orientation can be easily changed by rotating the pump body that carries inlet port.
T

v

u

w

6
 drive shaft

CYLINDRICAL SHAFT KEYED

1 = for single and multiple pumps (only first position) supplied as standard if not specified in the model code
$2=$ for single and multiple pumps (only first position)
long version (only for PFE-41 and PFE-51)
3 =for single and multiple pumps (only first position)
for high torque applications

	Keyed shaft type 1 (standard)						Keyed shaft type 2						Keyed shaft type 3					
Model	A1	F	G1	K	ØZ1	Only for through shaft execution Ø AQ	A1	F	G1	K	ØZ1	Only for through shaft execution $\varnothing \text { ØQ }$	A1	F	G1	K	ØZ1	Only for through shaft execution $\varnothing A Q$
PFE-31	$\begin{aligned} & 4,78 \\ & 4,75 \end{aligned}$	$\begin{aligned} & 21,11 \\ & 20,94 \end{aligned}$	56,00	8,00	$\begin{aligned} & 19,05 \\ & 19,00 \end{aligned}$	SAE 16/32-9T	-	-	-	-	-	-	$\begin{aligned} & 4,78 \\ & 4,75 \end{aligned}$	$\begin{aligned} & 24,54 \\ & 24,41 \end{aligned}$	56,00	8,00	$\begin{aligned} & 22,22 \\ & 22,20 \end{aligned}$	SAE 16/32-9T
PFE-41	$\begin{aligned} & 4,78 \\ & 4,75 \end{aligned}$	$\begin{aligned} & 24,54 \\ & 24,41 \end{aligned}$	59,00	11,40	$\begin{aligned} & 22,22 \\ & 22,20 \end{aligned}$	SAE 32/64-24T	$\begin{aligned} & 6,36 \\ & 6,35 \end{aligned}$	$\begin{aligned} & 25,03 \\ & 24,77 \end{aligned}$	71,00	8,00	$\begin{aligned} & 22,22 \\ & 22,20 \end{aligned}$	SAE 32/64-24T	$\begin{aligned} & \hline 6,38 \\ & 6,35 \end{aligned}$	$\begin{array}{\|l\|} \hline 28,30 \\ 28,10 \end{array}$	78,00	11,40	$\left.\begin{array}{\|l\|} 25,38 \\ 25,36 \end{array} \right\rvert\,$	SAE 32/64-24T
PFE-51	$\begin{aligned} & 7,97 \\ & 7,94 \end{aligned}$	$\begin{aligned} & 35,33 \\ & 35,07 \end{aligned}$	73,00	14	$\begin{aligned} & 31,75 \\ & 31,70 \end{aligned}$	SAE 16/32-13T	$\begin{aligned} & 7,95 \\ & 7,94 \end{aligned}$	$\begin{aligned} & 35,33 \\ & 35,07 \end{aligned}$	84,00	8,10	$\begin{aligned} & 31,75 \\ & 31,70 \end{aligned}$	SAE 16/32-13T	$\begin{aligned} & 7,97 \\ & 7,94 \end{aligned}$	$\left.\begin{aligned} & 38,58 \\ & 38,46 \end{aligned} \right\rvert\,$	84,00	14	$\left.\begin{aligned} & 34,90 \\ & 34,88 \end{aligned} \right\rvert\,$	SAE 16/32-13T

SPLINED SHAFT

$\mathbf{5}=$ for single and multiple pumps (any position)
for PFE-31 according to SAE A 16/32 DP, 9 teeth;
for PFE-41 according to SAE B 16/32 DP, 13 teeth
for PFE-51 according to SAE C 12/24 DP, 14 teeth
$6=$ for single and multiple pumps (only first position)
for PFE-31 and PFEX*-31 according to SAE B 16/32 DP, 13 teeth; for PFE-41 and PFEX*-41 according to SAE C 12/24 DP, 14 teeth;
7 = for second and third position pump in multiple configuration:
for PFEX*-31 according to SAE B 16/32 DP, 13 teeth
for PFEX*-41 according to SAE C 12/24 DP, 14 teeth;

	Splined shaft type 5					Splined shaft type 6					Splined shaft type 7				
Model					Only for through shaft execution					Only for through shaft execution					Only for through shaft execution
	G2	G3	K	Z1	Ø AQ	G2	G3	K	Z1	Ø AQ	G2	G3	K	Z1	\varnothing AQ
PFE-31	32,00	19,50	6,50	SAE 16/32-9T	SAE 16/32-9T	41,00	28	8,00	SAE 16/32-13T	SAE 16/32-9T	32,00	19	8,00	SAE 16/32-13T	SAE 16/32-9T
PFE-41	41,25	28	8,00	SAE 16/32-13T	SAE 32/64-24T	55,60	42	8,00	SAE 12/24-14T	SAE 32/64-24T	41,60	28	8,00	SAE 12/24-14T	SAE 32/64-24T
PFE-51	56,00	42	8,10	SAE 12/24-14T	SAE 16/32-13T	-	-	-	-	-	-	-	-	-	-

7 LIMITS OF SHAFT TORQUE

Pump model	Maximum driving torque [Nm]					Maximum torque available at the end of the through shaft [Nm]	
	Shaft type 1	Shaft type 2	Shaft type 3	Shaft type 5	Shaft type 6	Shaft type 7	Any type of shaft
PFE-31	160	-	240	110	240	240	130
PFE-41	250	250	400	200	400	400	250
PFE-51	500	500	850	450	-	-	400

The values of torque required to operate the pumps are shown for each type on the "torque versus pressure" diagram at section 4 .
In multiple pumps the total torque applied to the shaft of the first element (drive shaft) is the sum of the single torque needed for operating each single pump and it is necessary to verify that this total torque applied to the drive shaft is not higher than the values indicated in the table.

9 DIMENSIONS OF PUMPS WITH THROUGH-SHAFT (FOR MULTIPLE PUMPS) [mm]

(1) Tightening torque for screw class 12.9

09/12

